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Abstract

Continuing from Part I, we explore the properties of current’s inter-
section [·, ·] and show it is the extension of the geometric intersections in
topology, differential geometry and algebraic geometry.
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Before we get into the main development, we introduce the organization of
part II as follows. In section 1, we prove properties of the intersection of currents.
In section 2, we establish the connection between our current’s intersection and
geometric intersections in classical theories. In section 3, we use the current’s
intersection to develop further operators on currents. It leads a categorical
environment where the application will arise.
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1 Property

1.1 Basic properties

Lemma 1.1. Let X be a C∞ manifold, and Z ⊂ X a submanifold. Let

Z i
↪→ X

be the inclusion map. Let

D(X ,Z) = {ϕ ∈ D(X ) : ϕ|Z = 0}, (1.1)

where ϕ|Z is the pullback of the C∞-differential form by the inclusion map. So

D(X ,Z) ⊂ D(X ). (1.2)

Then the sequence

0 → D ′(Z)
i∗→ D ′(X )

R→ D ′(X ,Z) (1.3)

is exact, where ′ stands for the topological dual and R is the restriction map
through (1.2).

Proof. Let T ∈ D ′(Z) such that i∗(T ) = 0. Let q ∈ supp(T ) ⊂ Z. Let ϕ ∈ D(Z)
supported in an Euclidean neighborhood of q inside of Z. Then since Z is a
manifold, ϕ can be extended to a C∞ form ϕ′ in a neighborhood of q inside of
X. Then

∫
i∗(T )

ϕ′ =
∫
T
ϕ is equal to 0. Thus T = 0, and further i∗ is injective.

Next we focus on R. We assume Z is compact. It is trivial that R ◦ i∗ = 0.
Let’s show

ker(R) ⊂ Im(i∗).

Let U be a tubular neighborhood of Z and j : U → Z be a projection
induced from the normal bundle structure of U . Let h be a C∞ function on X
such that it has a compact support in U and it is 1 on Z. For any T ∈ D ′(X ),
we define a current T ′ on Z ∫

T ′
(·) :=

∫
T

hj∗(·). (1.4)

Let T ∈ ker(R). We would like to show

i∗(T
′) = T.

It suffices to show that for any testing form of ϕ on X∫
T

hj∗(ϕ|Z) =
∫
T

ϕ,
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or ∫
T

(
hj∗(ϕ|Z)− ϕ

)
= 0. (1.5)

Since hj∗(ϕ|Z)− ϕ vanishes on Z,

ker(R) ⊂ Im(i∗),

so (1.3) is exact. If Z is non-compact, we can use a partition of unity to have
the same proof. We complete the proof.

Proposition 1.2. Let X be a manifold endowed with a de Rham data. Let
i : Z ↪→ X be a submanifold. Let T ∈ C(X ). Then there is a unique current
denoted by [Z ∧ T ]Z in Z such that

i∗([Z ∧ T ]Z) = [Z ∧ T ], (1.6)

where the intersection current [Z ∧ T ] is defined in [6].

Proof. For any ϕ ∈ D(X ,Z),∫
[Z∧T ]

ϕ = lim
ϵ→0

∫
Z
RX

ϵ (T ) ∧ ϕ = 0. (1.7)

Then by Lemma 1.1, there is a unique current in Z satisfying (1.6).

Property 1.3.
Let X a connected C∞ manifold of dimension m. Assume it is equipped with

a de Rham data. For Lebesgue currents T1, T2, the intersection [T1∧T2] ∈ C(X )
defined in [6] satisfies:

(1) (Supportivity)

supp([T1 ∧ T2]) ⊂ supp(T1) ∩ supp(T2). (1.8)

(2) (Closedness) The intersection current [T1 ∧ T2] is closed if T1, T2 are.

(3) (Cohomologicity) We use ⟨T ⟩ to denote the cohomology class represented
by a current T ∈ L (X ). If T1, T2 are closed, then in de Rham cohomology
we have

⟨T1⟩ ∪ ⟨T2⟩ = ⟨[T1 ∧ T2]⟩. (1.9)

Hence if the cohomology ⟨T1⟩, ⟨T2⟩ are integral, so is ⟨[T1 ∧ T2]⟩.
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(4) (Leibniz rule) If dT1, dT2 are Lebesgue and deg(T1) = p, then differential
of currents follows Leibniz rule,

d[T1 ∧ T2] = [dT1 ∧ T2] + (−1)p[T1 ∧ dT2]. (1.10)

(5) (Commutativity) Let deg(T1) = p, deg(T2) = q. Then

[T1 ∧ T2] = (−1)pq[T2 ∧ T1]. (1.11)

Proof. (1) It is Proposition 4.4, [6].

(2) Let ϕ be a test form. By the definition∫
b[T1∧T2]

ϕ

= lim
ϵ→0

∫
T1

RϵT2 ∧ dϕ

= ±
∫
T1

dRϵT2 ∧ ϕ

(1.12)

According to the homotopy (3.1), [6]

bRϵT2 − bT2 = bbAϵT2 − bAϵbT2 (1.13)

Because T2 is closed,
bRϵT2 = 0.

So [T1 ∧ T2] is closed.

(3) Let ϕ be a closed C∞ form of degree deg(T1)+deg(T2), and has a compact
support. Denote the cohomology class by ⟨·⟩. The intersection number,(

⟨[T1 ∧ T2]⟩
)
∪ ⟨ϕ⟩ (1.14)

is a well-defined real number that equals to

lim
ϵ→0

∫
T1

Rϵ(T2) ∧ ϕ. (1.15)

By the definition in §20, [1], the integral (1.14) is de Rham’s notion(
[T1 ∧ ϕ] ∧ T2

)
[1].
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which is the intersection number(
⟨T1⟩ ∪ ⟨T2⟩

)
∪ ⟨ϕ⟩. (1.16)

By the duality in Theorem 17, [1], the formulas (1.13) and (1.15) yield

⟨T1⟩ ∪ ⟨T2⟩ = ⟨[T1 ∧ T2]⟩. (1.17)

(4) (Leibniz Rule) Let ϕ ∈ D(X ) be a test form. Let

deg(T1) = p, deg(T2) = q.

Then

b[T1 ∧ T2](ϕ)

= lim
ϵ→0

∫
T1

RϵT2 ∧ dϕ

( Leibniz Rule for C∞ forms )

= lim
ϵ→0

∫
T1

(
(−1)qd(RϵT2 ∧ ϕ) + (−1)q+1dRϵT2 ∧ ϕ

)
= lim

ϵ→0

∫
(−1)qbT1

RϵT2 ∧ ϕ+ lim
ϵ→0

∫
(−1)q+1T1

dRϵT2 ∧ ϕ

( bT1, bT2 are Lebesgue)

=

∫
(−1)q [bT1∧T2]

ϕ+

∫
(−1)q+1[T1∧dT2]

ϕ

Hence

b[T1 ∧ T2] = (−1)q[bT1 ∧ T2] + (−1)q+1[T1 ∧ dT2]. (1.18)

After change the sign, we found (1.17) is the same as (1.10).

(5) G. de Rham in [1] defined two maps

Ar(X × Y)
A∗

−−−−−−→
∑

i+j=r Γ

(
Aj(Y)⊗ ∧iT ∗(X )

)
yA∗

S

∑
i+j=r Γ

(
Ai(X )⊗ ∧jT ∗(Y)

)
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where A•(·) denotes the space of C∞ forms and Γ(E ⊗ (∧•T ∗(−)) denotes the
space of C∞ forms with the value in vector space E. Both images are called
double forms that are in the isomorphic spaces

Γ

(
Aj(Y)⊗ ∧iT ∗(X )

)
≃ Γ

(
Ai(X )⊗ ∧jT ∗(Y)

)
.

He stated (p51, [1])
A∗(ϕ)− (−1)pqA∗

S(ϕ) = 0

if the test form ϕ has the pure degree p in X and pure degree q in Y.

Recall ϱϵ(x,y) is the kernel of Rϵ, a C∞ form on X×X . The explicit formula
is

Rϵ = η ◦ A∗(ϱϵ(x,y))|y
where η = ± is the sign operator dependent of orientations and degrees, and
left hand side is the double form evaluated in y (i.e. with the order 1)y, 2)x).

Then we evaluate the currents in weak limits for above test form ϕ,

lim
ϵ→0

(
[T1 ∧RX

ϵ (T2)]− (−1)pq[T2 ∧RX
ϵ (T1)]

)
(ϕ)

= lim
ϵ→0

(∫
(x,y)∈T1×T2

η ◦ A∗(ϱϵ(x,y)) ∧ ϕ− η ◦ (−1)pqA∗
S((ϱϵ(x,y)) ∧ ϕ

)
(By de Rham’s remark above for the order of his double form evaluation)

= lim
ϵ→0

(∫
T1×T2

0 ∧ ϕ

)
= 0.

(1.19)

So
[T1 ∧ T2]− (−1)pq[T2 ∧ T1].

1.2 Advanced properties

Definition 1.4.
Let U1, U2 be the de Rham data for the manifolds X1,X2 respectively. We

define the product de Rham data on the product X1×X2 by taking the Cartesian
product of given de Rham data in the following way: if Ui, Vj are the de Rham
coverings, the de Rham covering in X1 ×X2 is (Ui, Vj) with a fixed order of the
pair (i, j). We denote the product de Rham data by the same notation RX1×X2

ϵ .
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Proposition 1.5. (Projection formula) Let X1,X2 be two manifolds endowed
with de Rham data, X1 × X2 be endowed with the product de Rham data. Let
Pi : X1 × X2 → Xi be the projections for i = 1, 2 respectively, σ ∈ C(X1), and
T ∈ C(X1 ×X2). Then

(1)
RX1×X2

ϵ (σ ×X2) = (P1)
∗(RX1

ϵ (σ)) (1.20)

where σ ×X2 is the product current–the single current of the tensor
product of the currents.

(2) Let X2 be compact. Then

[(P1)∗(T ) ∧ σ] = (P1)∗[T ∧ (σ ×X2)]. (1.21)

where the left hand side is the intersection in X1, the right hand side is
the intersection in X1 ×X2.

(3) If X1 = X2 = X , then for σ ∈ L (X) and product de Rham data

(P2)∗

[
∆X ∧ (σ ×X )

]
= σ (1.22)

where ∆X is the diagonal of X .

Proof. (1). Assume X1,X2 are endowed with de Rham data, U1,U2 respectively.
For the regularization, let’s give a product de Rham data to X1×X2. We claim
for any σ ∈ C(X ),

Claim 1.6. as currents

RX1×X2
ϵ (σ ×X2) = RX1

ϵ (σ)×X2 (1.23)

on X1 ×X2 − ∂.

where ∂ is the union of the boundary of the unit balls in de Rham data (see
[6]).

Proof of the claim. Let B1 ⊂ X1, B2 ⊂ X2 be two unit balls in the de Rham
data U1,U2 for X1,X2 respectively. Using the data from B1, B2, we construct
the local smoothing operators for B1×B2 and B1. We denote them by RB1×B2

ϵ

and RB1
ϵ . Then the direct expression shows

RB1×B2
ϵ (σ|B1 ×B2) = RB1

ϵ (σ|B1)×B2

as currents on B1 × B2. Taking the composition for the de Rham’s smoothing
operator, both sides stay in the similar type. We obtain

RX1×X2
ϵ (σ ×X2) = RX1

ϵ (σ)×X2. (1.24)

Then we obtain that (1.21) holds on the

X1 ×X2 − ∂. □
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Now since both sides of (1.21) are C∞, by the continuity, (1.21) is extended
to the closure X1 ×X2. This completes the proof of part (1).

(2). Since X2 is compact, P1 is proper. Then the pushforward (P1)∗ of
currents is well-defined. Let ϕ be a test form on X1. We use the product de
Rham data on X1 ×X2 to find∫

[(P1)∗(T )∧σ]

ϕ = lim
ϵ→0

∫
(P1)∗T

RX1
ϵ (σ) ∧ ϕ

= lim
ϵ→0

∫
T

P ∗
1 (R

X1
ϵ (σ) ∧ ϕ)

= lim
ϵ→0

∫
T

P ∗
1 (R

X1
ϵ (σ)) ∧ P ∗

1 (ϕ)

(Use part (1))

= lim
ϵ→0

∫
T

RX1×X2
ϵ (σ ×X2) ∧ P ∗

1 (ϕ)

=

∫
(P1)∗[T∧(σ×X2)]

ϕ

This completes the proof.
(3) For (1.20), we let ϕ ∈ D(X ). Then

∫
(P2)∗[∆X∧(σ×X )]

ϕ

=

∫
[∆X∧(σ×X )]

(P2)
∗(ϕ)

= lim
ϵ→0

∫
∆X

RX×X
ϵ (σ ×X ) ∧ (P2)

∗(ϕ)

( Use projection formula, (1.19))

= lim
ϵ→0

∫
∆X

(P1)
∗(RX

ϵ (σ)) ∧ (P2)
∗(ϕ)

( Identify X ≃ ∆)

= lim
ϵ→0

∫
X
RX

ϵ (σ) ∧ ϕ

=

∫
σ

ϕ.

Delign gave an example showing that the associativity of the current’s in-
tersection does not hold ([2]). However, we show another type of associativity
still holds.
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Proposition 1.7. (Conditional associativity)
Let i : Z → X be the embedding of manifolds. There exist de Rham data

UZ ,UX on Z,X respectively such that for W ∈ L (Z), and σ ∈ L (X ),

i∗([W ∧Z [Z ∧X σ]Z ]) = [i∗W ∧X σ] (1.25)

where the notation for [Z ∧ σ]Z is defined in Proposition 2.5, and the subscript
under ∧ denotes the ambient space of the intersection.

Proof. We may assume Z is compact. Let j : E → Z be a tubular neighborhood
of Z in X . Thus E is diffeomorphic to a vector bundle of rank r. We denoted
the bundle also by E. Let i : Z → E is the 0-section embedding. Let U be a de
Rham data for Z such that each de Rham chart Ui lies in the trivialization. So

j−1(Ui) ≃ Ui × Rr. (1.26)

Let j−1(Ui), i be the de Rham covering for E. On each j−1(Ui), we use the
product de Rham data for Ui ×Rr. Then as for the construction of de Rham’s
smoothing operator [6], we glue them to obtain the de Rham data for E, denoted
by UE . At last we extend it arbitrarily to the whole manifold X to have a de
Rham data UX . Notice W is supported around Z. Hence the intersection occur
in E. We may continue with X = E. Then it suffices to work in one chart

j−1(Ui) ≃ Ui × Rr

that is equipped with the product de Rham data. Let the projection of E to Ui

be π1, and to Rr π2. Then

[σ ∧X Z] = lim
ϵ→0

[σ ∧X RX
ϵ (Z)] (1.27)

where the limit is the weak limit for currents in X . We continue to have[
[σ ∧X Z]Z ∧W

]
= lim

ϵ→0
lim
ϵ′→0

[
[σ ∧X (π2)

∗(RX
ϵ )]Z ∧Z RZ

ϵ′ (W)

]
(1.28)

Since two parameters ϵ, ϵ′ are located in two independent differential forms, the
order of the iterated limit can be exchanged. So we have

i∗

[
[σ ∧X Z]Z ∧Z W

]
= i∗

(
lim
ϵ′→0

lim
ϵ→0

[
[σ ∧X (π2)

∗(RX
ϵ (Z))]Z ∧Z RZ

ϵ′ (W)

])
( Note lim

ϵ′→0
(π2)

∗(RX
ϵ (Z)) ∧X (π2)

∗(RZ
ϵ′ (W)) = RX

ϵ (W))

= lim
ϵ→0

[σ ∧X RX
ϵ (W))]

= [σ ∧X W].

(1.29)
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By the commutativity of the intersection,

i∗

[
W ∧Z [Z ∧X σ]Z

]
= [W ∧X σ].

We complete the proof.

Definition 1.8. Any pair of de Rham data such as UZ ,UX satisfying Proposi-
tion 2.12 will be called the associative de Rham data.

We further establish formulas in cohomology. Let

LC(X ) ⊂ L (X )

be the subgroup of closed currents.

Proposition 1.9.
Let X ,X × X be endowed with de Rham data. Let T1, T2, T3 ∈ L (X ).

(1) Reduction to the diagonal
There exists a homologically trivial current α1 such that

[T1 ∧ T2] = (−1)m(P2)∗[∆ ∧ (T1 × T2)] + α1 (1.30)

where P2 : X × X → X (2nd copy) is the projection, ∆ is the diagonal.

(2) Commutativity
There exists a homologically trivial current α2 such that

[T1 ∧ T2] = (−1)dim(T1)dim(T2)[T2 ∧ T1] + α2. (1.31)

(3) Associativity
There exists a homologically trivial current α3 such that[

T1 ∧ [T2 ∧ T3]

]
=

[
[T1 ∧ T2] ∧ T3]

]
+ α3. (1.32)

Let i : Z ↪→ X be the inclusion of a submanifold endowed with a
de Rham data. Let W ∈ L (Z), and σ ∈ L (X ). Then there exists a
homologically trivial current α4 such that

i∗([W ∧Z [Z ∧X σ]Z ]) = [i∗W ∧X σ] + α4 (1.33)

where the subscript in ∧• denotes the ambient space in intersection.
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Proof. Notice the cohomologicity

⟨T1⟩ ∪ ⟨T2⟩ = ⟨[T1 ∧ T2]⟩. (1.34)

holds, and the proper pushforward of currents is compatible with the pullback of
cohomology. Thus all formulas in propositions follow from their corresponding
versions in cohomology.

2 Dependence of de Rham data

The intersection of currents depends on extrinsic de Rham data. However, in
classical cases the intersection does not depend on any extrinsic data. In this
section, we’ll show that two views have no contradiction since when the currents
have certain geometric structures, the dependence vanishes. So the dependence
plays a profound role in the intrinsic definition of intersection.

2.1 Real case

It is well-known that on a manifold, if two submanifolds meet transversally at
another submanifold, then the intersection should be defined to be the intersec-
tional manifold. The more useful version is its extension to algebraic geometry.
The following proposition says that the transversal intersection is a particu-
lar case where the dependence of de Rham data disappears due to the special
geometric position.

Proposition 2.1. Let X be a manifold of dimension m. If T1, T2 are cells of
real dimension p, q with p+q ≥ m, and the intersection T1∩T2 is transversal at
a connected, manifold V of dimension p+ q−m. Then [T1 ∧T2] is independent
of de Rham data. Furthermore it is the current of integration over V .

Proof. Let’s set up the coordinates for the cells. Let X = Rm have linear basis
e1, · · · , em and coordinates x1, · · · , xm. Set up the subspaces,

Rp = span(e1, · · · , ep)
Rq = span(em−q+1, · · · , em)

Rp+q−m = span(em−q+1, · · · , ep)
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Let T1 = ∆p ⊂ Rp be the polyhedron defined by

{
p∑

i=1

|xi| < 1} (2.1)

Similarly T2 = ∆q is defined by

{
m∑

i=m−q+1

|xi| < 1}, (2.2)

V = ∆p ∩∆q is defined by

{
p∑

i=m−q+1

|xi| < 1}. (2.3)

Let πp+q−m : Rm → Rp+q−m be the projection. The proof has two steps.

1st step: Notice [T1 ∧ T2] has a compact support, hence [T1 ∧ T2] is also
evaluated at the forms in C∞(Rm) without a compact support. Let ϕ ∈ D(Rm).
Notice by the definition [T1 ∧ T2] is i∗([T1 ∧ T2]Rp+q−m) for some current

[T1 ∧ T2]Rp+q−m (2.4)

in Rp+q−m, where i : Rp+q−m ↪→ Rm is the inclusion map. We denote i∗(ϕ) by
ϕ0. Then we obtain that∫

[T1∧T2]

ϕ =

∫
[T1∧T2]Rp+q−m

ϕ0

=

∫
[T1∧T2]

π∗
p+q−m(ϕ0)

(2.5)

Recall that the C∞ form π∗
p+q−m(ϕ0) is not compactly supported, and is called

a local constant slicing in Definition 3.5, [6], therefore a closed form. So

d(π∗
p+q−m(ϕ0)) = 0.

Now we apply the homotopy formula (3.1), [6]. It suffices to work with
ϕ ∈ D(Rm) such that

supp(π∗
p+q−m(ϕ0)) ∩

(
∂(T1) ∪ ∂(T2)

)
= ∅.

For arbitrary de Rham’s regularization R′
ϵ, A

′
ϵ with fixed sufficiently small real

numbers ϵ1, ϵ2, we apply the homotopy formula (3.1), [5] to have∫
[T1∧T2]

π∗
p+q−m(ϕ0) (2.6)

= −
∫
[(bA′

ϵ1
T1+A′

ϵ1
bT1)∧(bA′

ϵ2
T2+A′

ϵ2
bT2)]

π∗
p+q−m(ϕ0) (2.7)

+

∫
[R′

ϵ1
T1∧R′

ϵ2
T2]

π∗
p+q−m(ϕ0) (2.8)
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Now we calculate the first integral (2.7)∫
[(bA′

ϵ1
T1+A′

ϵ1
bT1)∧(bA′

ϵ2
T2+A′

ϵ2
bT2)]

π∗
p+q−m(ϕ0)

(because supp(bTi) ∩ supp(π∗
p+q−m(ϕ0)) = ∅.)

= ±lim
ϵ→0

∫
[Aϵ′1

T1∧bA′
ϵ2

T2]

d(π∗
p+q−m(ϕ0))

= 0

This shows that∫
[T1∧T2]

π∗
p+q−m(ϕ0) =

∫
[R′

ϵ1
T1∧R′

ϵ2
T2]

π∗
p+q−m(ϕ0). (2.9)

We observe that the right hand side of (2.9) does not involve the de Rham’s
smoothing operator Rϵ, thus the current [T1 ∧ T2] is independent of the choice
of de Rham data U .

2nd step: To calculate the intersection [T1 ∧ T2]. By the 1st step, we can
choose a particular de Rham’s data U that has one chart x1, · · · , xm for Rm.
Also we choose a C∞ convolution function f(x) supported in a neighborhood
of a unit ball B satisfying ∫

Rm

f(x)dµ = 1. (2.10)

where dµ = dx1 ∧ · · · ∧ dxm. Let ϑϵ(x) = f(xϵ )d
µ
ϵ .

Let
κ : Rm × Rm → Rm

(x,y) → x− y,
(2.11)

Denote the coordinates (x1, · · · , xm−q) by x1, (xm−q+1, · · · , xp) by x2 and
xi+1, · · · , xm by x3. Similarly for the second copy of Rm in (2.11), the cor-
responding coordinates are denoted by y1,y2,y3 respectively.

Let
g(

x1

ϵ
,
x2

ϵ
,
x3

ϵ
,
y1

ϵ
,
y2

ϵ
,
y3

ϵ
) = κ∗(ϑϵ). (2.12)

Let ϕ ∈ D(Rm) be a test form. Then we calculate the current

∫
[T1∧T2]

ϕ = lim
ϵ→0

∫
T1

Rϵ(T2) ∧ ϕ

= lim
ϵ→0

∫
T1

∫
(y2,y3)∈T2

g(
x1

ϵ
,
x2

ϵ
, 0, 0,

y2

ϵ
,
y3

ϵ
) ∧ ϕ(ϵ

x1

ϵ
,x2, 0)

(2.13)

where ϕ(ϵx1

ϵ ,x2, 0) is a test form, i.e. C∞ form on T1 with a compact support.
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Now applying the fibre integral to that over T1, we obtain∫
[T1∧T2]

ϕ

= lim
ϵ→0

∫
x2∈Ri+j−m

∫
x1∈Rm−j

∫
(y2,y3)∈Rj

g(
x1

ϵ
,
x2

ϵ
, 0, 0,

y2

ϵ
,
y3

ϵ
) ∧ ϕ(ϵ

x1

ϵ
,x2, 0)

(2.14)

Then we make a change of variables,

x1

ϵ → x1,
y2

ϵ → y2
y3

ϵ → y3.
(2.15)

Then∫
[T1∧T2]

ϕ

= ± lim
ϵ→0

∫
x2∈Ri+j−m

∫
x1∈Rm−j

∫
(y2,y3)∈Rj

g(x1,
x2

ϵ
, 0, 0,y2,y3) ∧ ϕ(ϵx1,x2, 0)

(2.16)

Then we notice for each fixed x2, the fibre integral∫
y2,y3∈Rj ,x1∈Rm−j

g(x1,
x2

ϵ
, 0, 0,y2,y3) (2.17)

by the formula (2.10), is 1. Therefore we obtain that

[T1 ∧ T2](ϕ) =

∫
Ri+j−m

ϕ(0,x2, 0) (2.18)

Thus
[T1 ∧ T2](ϕ) =

∫
V
ϕ|V . (2.19)

where ϕ|V is the restriction ϕ(0,x2, 0) of ϕ to V . We complete the proof.

For non transversal intersection, there is no clear notion of geometric posi-
tion. So the dependence varies from case to case. The following examples are
all based on singular chains.

Example 2.2. (real excess intersection)
Let X = R2, and be equipped with the de Rham data consisting of single

chart R2 with the convolution function f satisfying∫
R2

f(x1, x2)dx1 ∧ dx2 = 1 (2.20)
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where x1, x2 are Euclidean coordinates of R2. Let T1 = T2 be the current of
integration over the finite piece of the parabola

x1 = x2
2 (2.21)

containing the origin 0. Since T1, T2 are singular chains, [T1 ∧ T2] exists. Let
ϕ(x) be a test function with a compact support. Denote the second copy of R2

for the de Rham’s regularization by y1, y2. Then we calculate

∫
[T1∧T2]

ϕ

∥

lim
ϵ→0

1

ϵ2

∫
x∈T1

∫
y∈T2

f(
x1 − y1

ϵ
,
x2 − y2

ϵ
)ϕ(x1, x2)(dx1 − dy1) ∧ (dx2 − dy2)

(2.22)
substitute x1 = x2

2, y1 = y22 for T1, T2, we obtain that

∫
[T1∧T2]

ϕ

∥

lim
ϵ→0

2

ϵ2

∫
x2∈R

∫
y2∈R

f(
(x2 − y2)(x2 + y2)

ϵ
,
x2 − y2

ϵ
)ϕ(x1, x2)(x2 − y2)dy2 ∧ dx2.

(2.23)
Next we make a change of the variables{

u = (x2−y2)
ϵ

v = x2 + y2.
(2.24)

Then
[T1 ∧ T2](ϕ)

∥

lim
ϵ→0

∫
u∈R

∫
v∈R

uf(uv, u)ϕ((
ϵu+ v

2
)2,

ϵu+ v

2
)dv ∧ du

∥∫
(u,v)∈R2 uf(uv, u)ϕ((

v
2 )

2, v
2 )dv ∧ du.

(2.25)

Then the functional

ϕ →
∫
(u,v)∈R2

uf(uv, u)ϕ((
v

2
)2,

v

2
)dv ∧ du (2.26)

defines a current supported on T1. So the intersection current

[T1 ∧ T2]

(which is (2.26)) is supported on T1, depending on the convolution function f .
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Example 2.3. (real proper intersection)
Let X = R2 be equipped with the de Rham data consisting of single chart R2

with the convolution function f satisfying∫
R2

f(x1, x2)dx1 ∧ dx2 = 1 (2.27)

where x1, x2 are Euclidean coordinates of R2.

Case 1: Let T1 be a line through the origin 0 and T2 is another line segment
through the origin. Then it is known that

[T1 ∧ T2] = δ0

if the order matches with the orientation of R2.

Case 2: Continuing from the setting in case 1, let T2 be the line x1 = 0. Let
T1 be a piece of parabola

x1 = x2
2, x2 ∈ (−1, 1). (2.28)

Let’s calculate [T1∧T2]. Let ϕ(x) be a test function supported in a neighborhood
of the origin. We denote the second copy of R2 for de Rhams’ regularization by
(y1, y2). Then∫

[T1∧T2]

ϕ

= lim
ϵ→0

1

ϵ2

∫
x1∈T1

∫
y2∈R

f(
x1

ϵ
,
x2

ϵ
− y2

ϵ
)ϕ(x1, x2)dy2 ∧ dx1.

(2.29)

Let

f1(x1) =

∫
y2∈R

f(x1,−y2)dy2.

Now we continue (2.29) to have ∫
[T1∧T2]

ϕ

∥

lim
ϵ→0

1

ϵ

∫
(x1,x2)∈T1

f1(
x1

ϵ
)ϕ(x1, x2)dx1

∥

ϕ(0)

(∫ 0

+∞ f1(x1)dx+
∫ +∞
0

f1(x1)dx1

)
= 0,

(2.30)

So
[T1 ∧ T2] = 0

for all convolution function f in the de Rham data. This example shows the
formula

supp([T1 ∧ T2]) = supp(T1) ∩ supp(T2)
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does not hold for singular chains.

Case 3: Continuing from the setting in case 2, let T2 be the line x1 = 0. Let
T1 be a piece of the cubic curve

x1 = x3
2, x2 ∈ (−1, 1). (2.31)

The same calculation in case 2 shows if order of T1, T2 is concordant with ori-
entation of R2, then ∫

[T1∧T2]

ϕ = ϕ(0). (2.32)

Hence

[T1 ∧ T2] = δ0 (2.33)

where δ0 is the δ-function at the origin. So the intersection is independent
choice of convolution function f in de Rham data.

Remark All three cases in Example 2.3 coincide with de Rham’s Kronecker
index T1 ∧ T2[1] which does not depend on the de Rham data.

2.2 Complex case

In complex geometry, intersection of currents coincides with proper intersec-
tion where the theory has been explored in great detail through the tool in
commutative algebra.

Proposition 2.4. Let f : X → Y be a regular map between two smooth projec-
tive varieties. Let W be an algebraic cycle of X. We denote the pushfoward of
currents and algebraic cycles by the same notation f∗. Then the current f∗[W ]
is the current of integration over the cycle

f∗W,

where [W ] stands for the current of integration over the algebraic set.

Proof. Let W =
∑

i aiWi where Wi are irreducible subvarieties of the same di-
mension and ai are non-zero integers. Let f∗Wi = biSi where bi is the dimension
of field extension of the rational field of Si to Wi. Let |W0| be the open sets of
the support |W | such that f is smooth. Then correspondingly f(|W0|) = ∪iS

0
i ,

where S0
i are open sets of Si. Then using currents, we have

f∗[f
−1(S0

i )] = biS
0
i . (2.34)
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Taking the closure and the sum over all i, we obtain that

f∗(
∑
i

ai[Wi]) =
∑
i

aibi[Si]. (2.35)

Since for algebraic cycles, we have

f∗(
∑
i

aiWi) =
∑
i

aibiSi, (2.36)

we complete the proof.

Due to the proposition, throughout letter W will denote both currents and
algebraic cycles, and f∗ denotes the operations on both currents and algebraic
cycles.

Theorem 2.5. Let X be a smooth projective variety of dimension n over C.
Let T1, T2 be algebraic cycles of dimension p, q in X, To abuse the notations,
the currents of integration over them are also denoted by T1, T2 respectively.
Assume |T1|∩ |T2| is proper. Then with an arbitrary de Rham data U on X, the
current [T1 ∧ T2] is independent of U , and equals to the current of integration
over the algebraic cycle

T1 • T2,

where T1 • T2 is the cycle-intersection by Serre’s Tor formula. More precisely it
is the sum ∑

j

mjWj .

where Wj are all irreducible subvarieties, mi are intersection multiplicities at
Wj if Wj are components with the proper dimension in the intersection scheme.

Proof. It suffices to assume T1, T2 are prime cycles (cycles of irreducible sub-
varieties). Let’s fix the cycle T2. By example 11.4.2, [3], there is an algebraic
cycle E1 rationally equivalent to T1 such that E1 meets T2 transversely (at an
open set of each irreducible support). Without losing the generality, let’s have a
simplified setting as follows. Let V ⊂ P1 ×X be an irreducible subvariety, and
P2 : V → X, P1 : V → P1 are the projections. Let T2 ⊂ X be an irreducible
subvariety. Assume the cycle of the scheme P−1

1 (1) is E1 and the cycle of the
scheme P−1

1 (0) is T1, where 0, 1 are two points of P1. Let I be a real curve in
P1 connecting 0, 1. Next we consider two objects: currents and algebraic cycles.
Using the currents, according to Proposition 3.13 (current-homotopy) below in
section 3, we have the formula

[T1 ∧ T2]− [E1 ∧ T2] = dW (2.37)
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where W is some current.
Next we consider the algebraic cycles in intersection theory where two ra-

tionally equivalent algebraic cycles are homotopic. More precisely, since the
intersection T1 ∩ T2 is proper, we have the equation in singular cycles

T1 • T2 − E1 • T2 = dW (2.38)

where W is a singular chain in the complex manifold P1×X, T1 •T2, E1 •T2 are
singular cycles obtained from the triangulation of the intersectional algebraic
cycles, and d is the differential operator on the singular chains ( the boundary
operator with a sign). We claim

Claim 2.6. W is the integration functional over the singular chain W .

Proof of the claim. We assume T1, T2 are irreducible subvarieties. Let D be
an irreducible component of the scheme

(P1 × T2) ∩ V

containing an irreducible component of

(P1 × T2) ∩ ({1} × E1).

Since the intersection E1 ∩ T2 is transversal, by the continuity, the intersection
(P1 × T2)∩ ({1}×E1) at D is genereically transversal. By Proposition 2.1, the
current at D, denoted by

[(P1 × T2) ∧ V ]|D (2.39)

is the integration over the algebraic subvariety

(P1 × T2) ∩ V

at D, where ·|D denotes the restriction of a current. Then the restriction current

[(I ×X) ∧ V ]|D

is an semi-algebraic set which is a singular chain. Taking the union over all com-
ponents D, we obtain the current W is the integration over the semi-algebraic
set

(I ×X) ∩
(
(P1 × T2) ∩ V

)
.

Let W denote this semi-algebraic set. So W is the integration over the singular
chain W . Linearly extending the assertion to cycles T1, T2, we complete the
proof of the claim.

By the claim,

[T1 ∧ T2]− [E1 ∧ T2] = T1 • T2 − E1 • T2 (2.40)

where the algebraic cycles at right are regarded as the currents of integration.
By Proposition 2.1, since E1 meets T2 transversely,

[E1 ∧ T2] = E1 • T2. (2.41)
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Thus
[T1 ∧ T2] = T1 • T2.

We complete the proof.

Example 2.7. Let X be a smooth projective variety of dimension n over C.
Let T1, T2 be subvarieties of X of codimension p, q. The currents of integration
over them are also denoted by T1, T2 respectively. Assume T1 ∩ T2 is an excess
intersection. Then

[T1 ∧ T2] (2.42)

in general depends on the de Rham data U .

Let P2 be a projective space over C with affine coordinates (z1, z2). Let T1

be the hyperplane z2 = 0, and T2 = T1. First it is not zero because its reduction
to cohomology group is non-zero. Choose two open sets as de Rham’s covering:
U1, the finite affine plane, and a small neighborhood U2 of the infinity P1 ⊂ P2.
Choose real Euclidean coordinates x1, y1, x2, y2 for U1 such that

z1 = x1 + iy2, z2 = x2 + iy2.

Use these open covering and Euclidean coordinates to have a de Rham data for
P2 with a convolution function h(x1, x2, y1, y2) of the unit ball B in U1. Then
we see in U1,

R1
ϵ (T2) = − 1

ϵ4

∫∫
(x′

1,y
′
1)∈R2

h(
x1 − x′

1

ϵ
,
x2

ϵ
,
y1 − y′1

ϵ
,
y2
ϵ
)dx′

1 ∧ dy′1 ∧ dx2 ∧ dy2,

(2.43)
where x′

i, y
′
i are the Euclidean coordinates for the second factor in the smoothing

operator. The composing with another local smoothing operator from U2 will not
change the smooth current R1

ϵ (T2) in B. Thus for a test form ϕ supported in
B, the integral ∫

T1

RB
ϵ (T2) ∧ ϕ =

∫∫
x2=y2=0

(· · · )dx2 ∧ dy2 = 0. (2.44)

This shows with this type of de Rham data,

[T1 ∧ T2] (2.45)

is zero on U ∩ T1. Hence [T1 ∩ T2] is a 0-dimensional current supported at the
infinity point of T1. Since the ∞ = P1 is arbitrary, [T1 ∧T2] is supported on an
arbitrary set determined by the de Rham data.

Example 2.8.
The following table lists the difference in case of excess intersection.
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Table 1: Excess intersection in complex case

Intersection Cycle Chow class Support

algebraic T1 • T2 not well-defined well-defined |T1| ∩ |T2|

current [T1 ∧ T2] well-defined not well-defined |T1| ∩ |T2|

3 Intersectional operators

We’ll define operators for currents based on the intersection of currents.

3.1 Correspondence of a current

Lemma 3.1. Let X ,Y be two compact manifolds, and PX be the projection

X × Y → X .

Then the image of the projection

(PX )∗ : C(X × Y) → D ′(X )

lies in C(X ).

Proof. Notice there is a coordinates chart of X × Y satisfying that the coor-
dinates planes of X are also the coordinates planes for X × Y. Thus the two
conditions of Lebesgue currents for X are implied by that for X × Y.

Definition 3.2.
Let X ,Y be two compact manifolds.
Let

F ∈ C(X × Y) (3.1)

be a Lebesgue current. Assume X × Y is equipped with a de Rham data. Let
PX , PY be the projections

X × Y → X , X × Y → Y.

Define the correspondence F⋇(T ) of currents by

F⋇ : C(X ) → C(Y)
T → (PY)∗[F ∧ (T × Y)].

(3.2)
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Define the transpose
F⋇(T )

by
F⋇ : C(Y) → C(X )

T → (PX )∗[F ∧ (X × T )].
(3.3)

Proposition 3.3. Let X ,Y be compact manifolds. The pull-back and push-
forward of currents extents Gillet and Soulé’s proper push-forward and smooth
pullback on complex manifolds.

Proof. We verify that Gillet-Soulé’s operators coincide with current’s correspon-
dence on C∞ manifolds.

Let
f : X → Y (3.4)

be a C∞ map. Let F be its graph. Let T be a Lebesgue current on X . Let ϕ
be a C∞ form on Y. We use a product de Rham data on X × Y. Then∫

F∗(T )

ϕ

= lim
ϵ→0

∫
F

RX×Y
ϵ (T × Y) ∧ (PY)

∗(ϕ)

(by Proposition 1.5, the projection formula )

= lim
ϵ→0

∫
F

(PX )∗RX
ϵ (T ) ∧ (PY)

∗(ϕ)

= lim
ϵ→0

∫
X
RX

ϵ (T ) ∧ f∗(ϕ)

=

∫
T

f∗(ϕ).

(3.5)

This shows
F⋇(T ) = f∗(T )

where f∗ is defined as the dual of the pullback on forms in 1.4, ([4]).

Now let
f : X → Y (3.6)

be a C∞ submission. Hence there is a fibre integral f∗ on C∞ forms and the
pullback on the currents f∗. Let

F ⊂ X × Y
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be its graph. Let ϕ be a test form on X .∫
F⋇(T )

ϕ =

∫
(PX )∗[F∧(X×T )]

ϕ

= lim
ϵ→0

∫
F

RX×Y
ϵ (X × T ) ∧ (PX )∗(ϕ)

(by Proposition 1.5, the projection formula )

= lim
ϵ→0

∫
F

(PY)
∗(RY

ϵ (T )) ∧ (PX )∗(ϕ).

(3.7)

Notice
P ′
Y : F → Y (3.8)

is isomorphic to the submersion f . Then we apply the fibre integral of P ′
Y to

have

lim
ϵ→0

∫
F

(PY)
∗(RY

ϵ (T )) ∧ (PX )∗(ϕ)

= lim
ϵ→0

∫
Y
RY

ϵ (T ) ∧ f∗(ϕ)

=

∫
T

f∗(ϕ).

(3.9)

Thus
F⋇(T ) = f∗(T ). (3.10)

We complete the proof.

Proposition 3.4. Let X ,Y be two compact manifolds.
Let

F ∈ C(X × Y) (3.11)

be a homogeneous closed, Lebesgue current.
(a) Let T be a Lebesgue current of X or Y. Then supp(F⋇(T )) is contained

in the set

PY

(
supp(F ) ∩

(
supp(T )× Y

))
;

supp(F⋇(T )) is contained in the set

PX

(
supp(F ) ∩

(
X × supp(T )

))
.

(b) If T1, T2 are Lebesgue and closed (resp. homologous to zero) in X and Y
respectively, then F⋇(T1), F⋇(T2) are also closed (resp. homologous to
zero).
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Proof. (a) Let S be a Lebesgue current on X ×Y. Let a /∈ PY(supp(S)). Then
there is a neighborhood Ba ⊂ Y of a, such that

(X ×Ba) ∩ supp(S) = ∅.

Then for any ϕ ∈ D(Y) supported in Ba,∫
F

(PY)
∗(ϕ) = 0. (3.12)

Then
a /∈ supp((PY)∗(S)).

So
supp((PY)∗(S)) ⊂ PY(supp(S)). (3.13)

Similarly
supp((PX )∗(S)) ⊂ PX (supp(S)). (3.14)

Now we apply the S to the intersection of currents. Applying part (1),
property 1.3,

supp((PY)∗[F ∧ (T × Y)])
∩

PY

(
supp(F ) ∩ (supp(T )× Y)

) (3.15)

The proof of

supp(F⋇(T )) ⊂ PX

(
supp(F ) ∩ (X × supp(T ))

)
. (3.16)

is similar.
(b) By Property 1.3, the currents

[F ∧ (T1 × Y)], [F ∧ (X × T2)]

are closed. Therefore F⋇T2, F⋇T1 are closed. If they are homologous to zero,
then by Property 1.3,

[F ∧ (T1 × Y)], [F ∧ (X × T2)]

are homologous to zero in X ,Y. Thus F⋇T2, F⋇T1 are homologous to zero.
We complete the proof
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Example 3.5. Let X,Y be two smooth projective varieties over C,

f : X 99K Y

be a rational map. Then there is graph

F ⊂ X × Y. (3.17)

Once X × Y is equipped with de Rham data (which does not have any re-
quirements for X,Y ), there are homomorphisms F⋇, F

⋇

F⋇ : LC(X) → LC(Y )
F⋇ : LC(Y ) → LC(X).

(3.18)

We denote F⋇, F
⋇ by the more direct notations

f⋇, f
⋇

respectively. When LC(X),LC(Y ) are reduced to cohomology, f⋇, f
⋇ are re-

duced to the usual cohomological correspondences f∗, f
∗.

3.2 Functoriality

Due to the dependence of de Rham data, the current’s intersection does not
rise to the category. However the functoriality not only plays an important
role in technique, but also indispensable in idea. So we introduce the general
categorical environment where the real intersection theory should fit.

Definition 3.6. Let k be a whole number. Let X be a smooth projective variety
over C. Define NkL (X) to be the linear span of Lebesgue currents

T ∈ L (X)

satisfying supp(T ) lies in an algebraic set A of codimension

≥ codim(T )− k

2
.

(1) A current in NkL (X) will be called Nk leveled, and k is called
current-level. So NkL is a category whose objects are groups NkL (X)
with some X, whose morphisms are group homomorphisms.

(2)
NkLC(X) = LC(X) ∩NkL (X)

also form a filtration.
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(3) Let B(X) be the subgroup of C∞ singular cycles. Then

NkB(X) = B(X) ∩NkL (X)

the subgroups of singular cycles form a filtration.

(4) Let E(X) ⊂ L(X) be the subgroup of exact chains. Then

NkB(X) + E(X)

E(X)

is the quotient group whose tensor product with Q is denoted by

NkH(X;Q)

where k is called class-level.

Definition 3.7. In the definition of a category for the category theory, we
retain all items, but remove the axioms of the associativity and the identity.
The remaining collection is called a precategory.

Example 3.8. Let Co be the collection of a C∞ compact manifold endowed with
de Rham data, and a Lebesgue current on a Cartesian product of manifolds.
Then the pair of a manifold and a de Rham data is called an object. A Lebesgue
current is called a morphism. As usual, ob(Co) denotes the collection of objects,
hom(Co) the collection of morphisms. Let X ,Y,Z be three objects in ob(Co).
Let f1, f2 be morphisms in hom(X ,Y) and hom(Y,Z) respectively. Then we
define f2 ◦ f1 ∈ hom(X ,Z) to be the current

(PXZ)∗[(X × f2) ∧ (f1 ×Z)] (3.19)

where PXZ : X ×Y ×Z → X ×Z is the projection. This defines the precategory
Co.

Example 3.9. For a precategory, the objects are smooth projective varieties
over C endowed with de Rham data. Morphisms are finite correspondences
([5]). Let the composition be the composition of finite correspondences. We
denote this precategory by Cor. But furthermore it is also a category in the
usual sense. We should note Cor is not the category of finite correspondences
which is originally defined by Voevodsky, and denoted by CorC. But they are
closely related as that Cor is the extension of CorC to the C∞ environment.
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Example 3.10. For the precategory category, the objects are smooth projective
varieties over C endowed with de Rham data. Morphisms are algebraic cycles
on the Cartesian product. Let X,Y, Z three objects, f1, f2 are algebraic cycles
on X × Y and Y ×Z respectively. Recall that between two algebraic cycles α, β
in an ambient smooth projective variety, the cycle-intersection α • β is defined
as the sum ∑

j

mjWj .

where Wj are all irreducible subvarieties, mi are intersection multiplicities at
Wj if Wj are components with the proper dimension in the intersection scheme
|α| ∩ |β|, and zero otherwise. Define f2 ◦ f1 to be the algebraic cycle by the
cycle-intersection • as

(PXZ)∗((X × f2) • (f1 × Z)) (3.20)

where PXZ : X × Y ×Z → X ×Z is the projection. We denote this precategory
by CCor. Furthermore CCor is also a usual category.

Due to the presence of de Rham data, Categories Cor,CCor are not in the
environment of algebraic geometry. But the connection to algebro-geometric
categories is the source of our application.

Let X be a smooth projective variety over C, Z (X) be the Abelian group
freely generated by subvarieties of X. Then by Theorem 2.5,

ZR(X) := Z (X)⊗ R

is a subgroup of LC(X), and it is a subcategory of the Abelian category. The
cycle-intersection is extended to the real coefficients. Then due to the associa-
tivity of the cycle-intersection, there is a variant functor

Fc : CorC → ZR.

Next we define another variant functor for the category, but through the pre-
category Cor. For the finite correspondence, there is a currents’ correspondence

F⋇ : LC(X) → LC(Y ).

By Theorem 2.5, its restriction to ZR(Y ) is a homomorphism F⋇|ZR(Y ) inde-
pendent choice of the de Rham data. Furthermore it coincides with the proper
intersection of algebraic cycles. Hence the restriction defines another variant
functor

F⋇ : CorC → ZR.

Then

Proposition 3.11.
F⋇ = Fc.
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Proof. Let X,Y be two smooth projective varieties over C, and F a finite cor-
respondence. Then for any σ ∈ Z (X), the intersection

F ∩ (|σ| × Y )

is proper. By Theorem 2.5, with any de Rham data on X, Y

[F ∧ (σ × Y )] = F • (σ × Y ) (3.21)

where the left hand side is the currents’ intersection for the functor F⋇, and
right hand side is the current of cycle-intersection for the functor Fc. Hence

F⋇ = Fc.

3.3 Family of currents

Definition 3.12.
Let S and X be manifolds endowed with de Rham data. Let S×X be endowed

with the product de Rham data. Let I ∈ C(S × X ) be a homogeneous Lebesgue
current. Let PX be the projection

S ×X → X .

We denote the current-correspondence,

I⋇({s}) (3.22)

by Is. The set {Is}s∈S will be called a family of of currents parametrized by S,
and each member Is the fibre of I.

Remark The family Is depends on extrinsic de Rham data which is not
reflected in the notation.

Proposition 3.13. (current - homotopy) Let X be a manifold. Let Iϵ ⊂ R be
diffeomorphic to a finite closed interval of R with two end points 0 and ϵ > 0.
Let R be equipped with a de Rham data, R×X with the product de Rham data.
Let J be a Lebesgue current on

R×X . (3.23)

Assume dJ is also Lebesgue. Then

Jϵ − J0 = ϵd

(
(PX )∗[J ∧ (I1 ×X )]

)
− ϵ(PX )∗[dJ ∧ (I1 ×X )]. (3.24)

where PX : R × X → X is the projection. Furthermore, if J is closed, Jϵ,J0

are closed and homotopic.
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Proof. Apply the Leibniz rule (1.10) to the current[
J ∧ (Iϵ ×X )

]
.

Then the proposition follows.

Corollary 3.14. Let S and X be manifolds endowed with de Rham data. Let
S × X be endowed with the product de Rham data. Let I ∈ LC(S × X ) be a
homogeneous closed Lebesgue current. Then the currents Is in the family are
closed and they have the same cohomology class.

Proof. Let s1, s2 are two points of S. Let L ⊂ S be a smooth curve through
s1, s2. Let L be equipped with a de Rham data, and L × L be equipped with
the product de Rham data. We consider the containment

L×X i
↪→ S ×X

such that S ×X has the associative de Rham data. Then by Proposition 1.7,

i∗[({s} × X ) ∧ [(L×X ) ∧ I]] = [({s} × X ) ∧ I] (3.25)

Let IL = [(L × X ) ∧ I]]. Then the formula (3.25) implies (IL)s = Is for each
s ∈ S. We denote Is by Ia

s and (IL)as to emphasize they both are dependent of
associative de Rham data. So precisely formula (3.25) implies

(IL)as = (Is)a. (3.26)

For the product de Rham data on S × X , we have the definition Is whose
expression will be changed to (Is)p to indicate its dependence on product de
Rham data. We’ll denote the cohomology of a closed current by angle bracket
⟨·⟩. Since the kernel of de Rham’s regulator is homologous to the diagonal,

⟨(Is)a⟩ = ⟨(Is)p⟩. (3.27)

Also since current-homotopy, Proposition 3.13,

⟨(IL)as0⟩ = ⟨(IL)as1⟩. (3.28)

Combining (3.26)-(3.28), we obtain

⟨(Is1)p⟩ = ⟨(Is1)a⟩
= ⟨(IL)as1⟩ = ⟨(IL)as0⟩
= ⟨(Is0)p⟩

(3.29)
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Example 3.15. In the setting of Definition 3.12, we assume S,X are smooth
projective varieties over C, and I is a variety such that I is flat over S\{s0},
but not flat over S where s0 is a point of S. Then in algebraic geometry, we have
a family of algebraic cycles in X parametrized by S\{s0}, but over z0, the cycle
does not exist. In real intersection theory, the family of currents Is, s ̸= s0 exists
and is equal to the family of algebraic cycles through the integration. However
unlike the case of algebraic geometry, the current Is0 over s0 still exists, but the
family Is may not be continuous at s0 even in the weak topology.

Example 3.16. Let X be a smooth projective variety of dimension n over C.
Let T be a closed Lebesgue current representing a non-zero primitive cohomology
class in Hn(X;Q). Let

V ⊂ P1 ×X. (3.30)

be a Lefschetz pencil in X. Assume P1×X is equipped with a product de Rham
data. Let

I = [(P1 × T ) ∧ V ]. (3.31)

be the intersection current (which is a closed current in P1 × X). Then each
member in the family It is exact for all t ∈ P1. But since the projection of I is
T , I is not exact.

Example 3.17. Let X be a C∞ manifold and T a non-zero homogeneous
Lebesgue current in X . Let R × X be equipped with a product de Rham data.
Then I = {0} × T gives a family of currents by Definition 3.12. Notice It = 0
for all t including 0 (by Proposition 3.13), but I is non-zero.
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