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Abstract

Let X be a C∞ manifold equipped with a covering called de Rham
data. Let D ′(X ) be the linear space of currents. Measure-theoretically, we
construct a subspace L (X ) ⊂ D ′(X ) and a bilinear map, called current’s
intersection,

L (X )× L (X ) → L (X )
(T1, T2) → [T1 ∧ T2]

.

The intersection is dependent of de Rham data. However it has a rich
structure that form the real intersection theory. In the part I (this paper),
we prove the existence of such an intersection.
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1 Introduction

1.1 History of the current’s intersection

Inspired by the original formulation of de Rham theory, we interpret a particular
type of weak limits of measures as an intersection in geometry.

It begins with de Rham’s work in differential geometry. Let X be a C∞

manifold of dimension m. In [3], G. de Rham defined the intersection current

T ∧ ω (1.1)

between a current T and a C∞ form ω, expressed as a functional on D(X ) –
the space of C∞ differential forms with a compact support,∫

T

ω ∧ (•) (1.2)

where the integral notation
∫
T
(•) denotes the functional. The intersection sat-

isfies
supp(T ∧ ω) ⊂ supp(T ) ∩ supp(ω) (1.3)

where supp(·) stands for the support. The asymmetric expression (1.1) led
to the symmetric completion that historically emerged into the topology. For
instance, G. de Rham extended (1.1) to the intersection number between two
currents,

T ∧ S[1], (1.4)

where S is another current of dimension m − dim(T ). To do that, he first
constructed the de Rham’s regularization RϵT that is a family of C∞ forms for
real ϵ > 0, converging to T as ϵ → 0. Then he studied the convergence of the
real numbers, ∫

X
Rϵ(T ) ∧Rϵ′(S), as (ϵ, ϵ′) → (0, 0). (1.5)

Such a formulation encountered two obstacles: 1) the sequence is dependent of
the non-canonical regularization, 2) the limit may diverge due to the singular
support. He overcame them by creating a homotopy to evade. The result is
topological, thus weaker than the geometric setup. But it led to the cap product
in homology, which later was replaced by the cup product in cohomology. As
the cohomological approach prevails, the de Rham’s regularization fades out.

1.2 New direction

We return to the de Rham’s regularization, but in the new tool of measure
theory. In our formulation, we consider the convergence of similar real numbers,∫

T1

RϵT2 ∧ ϕ, as ϵ→ 0 (1.6)
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for a fixed test form ϕ ∈ D(X ), where T1, T2 are currents satisfying

dim(T1) + dim(T2) ≥ m.

The same obstacles still exist. But we do not use a homotopy to evade the
divergence. Instead we consider the reason of divergence. We found the diver-
gence lies in the measure of the singular support. So we go straight into the
singular support to obtain the convergence in Lebesgue measure. We call this
type of currents Lebesgue currents. If one regards geometric measure theory
as a method to measure the sets with tangential directions, real intersection
theory is a method to intersect such sets. The method has two steps: 1) con-
vert the currents to Lebesgue measure; 2) intersect the measure by taking the
limit. Thus the convergence is the weak convergence in Lebesgue measure. For
instance our intersection exists only in Lebesgue measure. But the application
lies in its connection with the classical cases which already include wedge prod-
uct of forms, transversal intersection of singular cycles, the proper intersection
of algebraic cycles and more. In this paper, we would like to prove a sufficient
condition for the convergence. Applying it we obtain a bilinear homomorphism
denoted by [· ∧ ·],

L (X)× L (X) → C(X)
(T1, T2) → [T1 ∧ T2],

(1.7)

for the subspace L (X)-the collection of Lebesgue currents. So (1.7) does not
only extend the formula (1.1), but also (1.3)

supp([T1 ∧ T2]) ⊂ supp(T1) ∩ supp(T2). (1.8)

The motivation (discussed elsewhere) is based on our belief that the singular
support contains the more advanced structure which is lost in the de Rham’s
homotopy.

We organized the rest as follows. In section 2, we introduce and explore a
particular type of currents called Lebesgue currents. In section 3, we review
de Rham’s regularization and give a further description of its kernel. In sec-
tion 4, we show that the conditions for Lebesgue currents are sufficient for the
convergence of de Rham’s regularization. This leads to the definition of the
intersection of currents – so called the intersection of currents.

2 Lebesgue currents

Definition 2.1. ( of notations)

(1) If T is current and ϕ is a test form, the functional for currents also
denoted by T (ϕ). The integral notion as in (1.2) will also be used with the focus
on the computation.
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(2) The functional of a distribution F is denoted by∫
F
(•)dµ (2.1)

where dµ is the Lebesgue measure of the Euclidean space. The notation
is extended to the functional of a signed measure that can evaluate
characteristic functions of measurable sets, or simply the measurable
sets.

(3) Let Rm be equipped with the coordinates x = {x1, · · · , xm} referred to
as a chart. Let VI be an r dimensional coordinates plane with multi
-index I of length r,

πI : Rm → VI

be the projection. Let VI⋄ be the perpendicular coordinates plane of
dimension m− r satisfying {II⋄} = {1, 2, · · · ,m} with concordant
orientations. Let dµI , dµI

⋄
be their Euclidean volume forms

dxi1 ∧ · · · ∧ dxir , dxi⋄1 ∧ · · · ∧ dxi⋄m−r

with the matching orders of the ∧ products. Throughout this paper
Euclidean volume forms associated with the chart are used in two different
ways interchangeably: a) as a C∞ differential form with concordant
wedge product, b) as the Lebesgue measure with respect to the chart. For
instance VI is equipped with the Lebesgue measure dµI .

(4) Let T be a current of dimension r with a compact support in Rm. In [3]
(Chapter III, §8, p36) T is written as

T =
∑
I

TIdµI
⋄

(2.2)

the form with distribution values. We call TI for each I the de Rham
distribution of T .

(5) Continuing from (3), let TI1 be one of de Rham distributions among
finitely many TI . Then (πI)∗(TI1dµI

⋄
) is a current of maximal degree

in the plane VI (where I1, I may not be the same). Hence it is regarded
as a distribution in VI (footnote 2 at p34, [3]), denoted by

(πI)⋆(TI1)

and called the projection of the de Rham distribution to VI with respect
to the chart. The projection (with the ⋆ subscript) has an expression,∫

(πI)⋆(TI1
)

fdµI =

∫
T

π∗
I (f)dµ

I1 . (2.3)

for a test function f ∈ D(VI).
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2.1 Definition

Definition 2.2. ( Radon-Nikodym* ) In the following, vectors or points in
Euclidean space R• will be denoted by bold letters. Let Rr be the Euclidean space
with the standard linear structure that has the basis e1, · · · , er and coordinates
x = {x1, · · · , xr}. Let dµx be the Euclidean volume form

dx1 ∧ · · · ∧ dxr,

λ = λ1e1 + · · ·+ λrer ∈ Rr (2.4)

be a varied vector in the open region such that λi > 0, all i. In the following we
describe a particular type of path limits (iterated) of a function of λ as λ → 0.
We divide the coordinates

λ1, · · · , λr
into groups as j1 group , j2 group, · · · , jl group such that

Rr ≃ Rj1 ⊕ Rj2 ⊕ · · · ⊕ Rjl

where all indexes j′s are non-zero. It will be referred to as the

group order. (2.5)

Then we consider such λ that λi values in the same group are equal. We’ll use
the symbol lim

λ↱0
to denote the particularly (ordered) iterated limit for λ → 0 (i.e.

all λjk → 0) in the order
lim
λjl

→0
· · · lim

λj1→0
.

We name it as a zigzag limit. Let

u = u1e1 + · · ·+ urer ∈ Rr

be a point. Let Dλ be an invertible affine map in the form,

Rr → Rr
x → B ◦ Dλ(x) + u

(2.6)

referred to as the testing map, where B is an invertible linear map and Dλ is
the diagonal linear map

Rr → Rr
ei → λiei, all i.

Denote the set of locally integrable functions by L1
loc. We say a bounded L ∈

L1
loc(Rr) is of Radon-Nikodym if for any test function ϕ ∈ D(Rr), any testing

map Dλ, any u and any group order, the zigzag limit

lim
λ↱0

∫
x∈Rr

L

(
Dλ(x)

)
ϕ(x)dµx (2.7)

*Radon-Nikodym derivative is an important locally L1 function in the theory of probability
(see [1]), whose average values around the non a.e. points lie in the heart of convergence of
(1.6).
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exists. We denote the limit (2.4) by

RNϕ,L, (2.8)

and call it the Radon-Nikodym number.

Remark Zigzag limit is a particular type of path limits along continuous
paths. However the function is not defined on the path.

Proposition 2.3. It does not depend on coordinates for the bounded

L ∈ L1
loc(Rr)

to be of Radon-Nikodym.

Remark However the Radon-Nikodym number depends on coordinates.
The invariance is due to the matrix B.

Proof. The proof for u ̸= 0 is identical with the homogeneous case where u = 0.
So let’s prove the homogeneous case. Let L ∈ L1

loc(Rr) be bounded and of
Radon-Nikodym in x-coordinates. Let y = {y1, · · · , yr} be another coordinates
of Rr, and

ν : Rr → Rr
(x1, · · · , xr) → (y1, · · · , yr)

(2.9)

be the diffeomorphism between the x-y coordinates. So we assume the homo-
geneous case,

ν(0) = 0.

Denote the volume forms of Rr in y, x coordinates by dµy, dµx respectively. So

dµy = g(x)dµx,

where g(x) is C∞. Then the composition L ◦ ν−1 denoted by Ly is also locally
L1. It is sufficient to show the convergence of the numbers

Aλ =

∫
y∈Rr

Ly(Dλ(y))ϕ(y)dµy (2.10)

as λ ↱ 0, where Dλ is the testing map with the linear transformation B and
ϕ(y) ∈ D(Rr). First we use standard calculation to convert the expression to
x-coordinates,

Aλ =
1

det(B)
∏r
i=1 λi

∫
y∈Rr

Ly(y)ϕ(D
−1
λ (y))dµy (2.11)

=
1

det(B)
∏r
i=1 λi

∫
x∈Rr

Ly(ν(x))

(
ν∗(ϕ(D−1

λ (y))dµy)

)
(2.12)

=
1

det(B)
∏r
i=1 λi

∫
x∈Rr

L(x)

(
ν∗(ϕ(D−1

λ (y))dµy)

)
(2.13)
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We make a change of variable

x ⇒ B0 ◦Dλ(x)

(replacement of x with B0 ◦Dλ(x)) where B0 = ν−1
∗ |0, a constant matrix under

the y-basis. So det(B0)g(0) = 1. The integral in the last row (2.10) is

det(B0)

∫
x∈Rr

L
(
B0 ◦Dλ(x)

)
ϕ
(
D−1

λ ◦ ν ◦B0 ◦Dλ(x)
)
g
(
B0 ◦Dλ(x)

)
dµx (2.14)

Because ϕ has a compact support, the variable x in the integral (2.11) is
bounded. Hence as |λ| → 0,

D−1
λ ◦ ν ◦B0 ◦Dλ(x)

uniformly (with respect to x) converges to x, and

B0 ◦Dλ(x)

to 0. Thus
ϕ(D−1

λ ◦ ν ◦B0 ◦Dλ(x))g(B0 ◦Dλ(x))

uniformly converges to
ϕ(x)g(0).

Considering the limits in

Aλ =det(B0)

∫
x∈Rr

L(B0 ◦Dλ(x)) ·
(
ϕ(D−1

λ ◦ ν ◦B0 ◦Dλ(x))g(B0 ◦Dλ(x))− ϕ(x)g(0)

)
dµx

+ det(B0)

∫
x∈Rr

L(B0 ◦Dλ(x))ϕ(x)g(0)dµx

since the function
L(B0 ◦Dλ(x))

is bounded, we conclude that

lim
λ↱0

Aλ = lim
λ↱0

∫
x∈Rr

L(B0 ◦Dλ(x))ϕ(x)dµx.

Notice B0 ◦Dλ is still a testing map. Hence

lim
λ↱0

∫
x∈Rr

L(B0 ◦Dλ(x))ϕ(x)dµx

converges. This completes the proof.
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Definition 2.4. (Lebesgue current).
Let X be a differentiable manifold of dimension m. Let U , a neighborhood,

x1, · · · , xm coordinates for U be a chart in the differential structure of X . Let
dµI be the Euclidean volume form

dxi1 ∧ · · · ∧ dxir (2.15)

of an r-dimensional coordinates plane VI with multi-index I = (i1 · · · ir),

πI : U → VI ≃ Rr

the projection given by the chart. Then a homogeneous current T of dimension p
is called Lebesgue if for each chart (U, x1, · · · , xm) in an atlas and each set S of
C∞ forms ξ ∈ D(U) bounded to order 0, the following conditions are satisfied.

(a) Lebesgue condition
Let I, I1 be any two multi-indexes with the same length. The projection

(πI)⋆(TI1) of each de Rham distribution TI1 of T ∧ξ to each coordinates plane VI
is a signed measure absolutely continuous with respect to the Lebesgue measure

(defined by the chart). Furthermore the Radon-Nikodym derivative
d(πI)⋆(TI1

)

dµI (see

section 32, [1]) is a bounded L1 function with the same compact support and for
all ξ in set S of forms bounded to order 0 (see chapter III, §9 in [3]). This is
equivalent to the existence of a Lebesgue integrable function LI on VI , that is
bounded, supported in the same compact set and satisfies∫

(πI)⋆(TI1
)

ϕdµI =

∫
VI

LIϕdµI (2.16)

for any test function ϕ ∈ D(VI). The L1 function LI =
d(πI)⋆(TI1

)

dµI will be called

the Lebesgue function of T or T ∧ ξ. The formula (2.16) can be combined with
(2.14) to have a more direct expression in terms of the original current T ,

(2.16) =

∫
T∧ξ

(πI)
∗(ϕ)dµI1 (2.17)

where the index I1 is the index associated to the de Rham distribution TI1 , i.e.

T ∧ ξ = TI1dµI
⋄
1 + · · · .

(note: index I is different from I1, but has the same length).

(b) Radon-Nikodym condition.
All Lebesgue functions LI of T are of Radon-Nikodym.

Remark Lebesgue functions of T are dependent of ξ and coordinates chart
which are not reflected in the notation LI . It is a particular type of density
functions in probability theory.� In integral theory it can be described as follows.

�A Radon-Nikodym derivative evaluated at an a.e. point is the infinitesimal ratio of two
measures, called the density.
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Proposition 2.5. Assume all notations from Definition 2.4. Then Radon-
Nikodym condition holds if and only if

lim
λ↱0

1

det(B)
∏r
i=1 λi

∫
v∈VI

LI(v)ϕ(D−1
λ (v))dµI (2.18)

exists for each test function ϕ and index I. Furthermore if the Lebesgue function
LI is continuous at u,

RNϕ,LI
= LI(u)

∫
v∈VI

ϕ(v)dµI . (2.19)

Proof. Recall the integral (2.7) in Radon-Nikodym condition. We consider the
integral ∫

v∈VI

LI(Dλ(v))ϕ(v)dµ
I .

After the change of variables
Dλ(v) ⇒ v. (2.20)

( replacement of Dλ(v) with v ) the formula (2.7) turns to the formula (2.18).
If LI is continuous, since v is bounded, we have

lim
λ↱0

∫
v∈VI

LI(Dλ(v))ϕ(v)dµ
I =

∫
v∈VI

lim
λ↱0

LI(Dλ(v))ϕ(v)dµ
I (2.21)

Therefore the limit exists and is equal to∫
v∈VI

LI(u)ϕ(v))dµI = LI(u)
∫
v∈VI

ϕ(v)dµI .

Thus the Radon-Nikodym condition is satisfied.

Definition 2.4 is stated in one atlas. Let’s show it is independent of the atlas.

Proposition 2.6. Definition 2.4 defines an invariant of the C∞ differential
structure.

Proof. We need to prove that the conditions (a), (b) of Definition 2.4 are inde-
pendent of charts. Let T be a current of dimension p, and ξ ∈ D(U) a form in
a neighborhood U . Let U, x = {x1, · · · , xm} be a chart called x-chart satisfying
the conditions of Definition 2.4 for T ∧ ξ. Let U, y = {y1, · · · , ym} be another
chart called y-chart. Let ν be the transition map from x-chart to y-chart. Let
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VI be an r dimensional x coordinates plane, VJ be an r dimensional y coor-
dinates plane, dµIx, dµ

J
y be the volume forms of the coordinates planes VI , VJ

respectively. Let

dµJ
⋄

y =
∑
K

gJK(x)dµK
⋄

x (2.22)

where gJK is the entry of the Jacobian matrix Jy→x from y-chart to x-chart,
and K is a multi-index of length r. Let πJ : U → VJ be the projection through
y-chart, and πI : U → VI the projection through the x-chart. We may assume
the projection map (in y-chart)

νIJ : VI → VJ

is a diffeomorphism that preserves the orientation. Now we fix J index of length
r. On U , we have the sum

T ∧ ξ =
∑
K

FK(y)dµK
⋄

y (2.23)

where FK(y) is a de Rham distribution on U , and K is the multi-index of length
r. Then supp(FK(y)) is bounded, since T ∧ ξ has a compact support. Then for
two fixed indexes J,K of length r,

FK(y)dµJ
⋄

y

is a current on U of dimension r. Through x-chart it has the following decom-
position

FK(y)dµJ
⋄

y =
∑
I

DI

where
DI = FK(ν(x))gJI(x)dµ

I⋄

x (2.24)

is a current of dimension r on U , and I⋄ is a multi-index of length m− r. Note:
FK(ν(x)) is the distribution

(ν−1)∗(FK(y)).

This notation for push-forwards of distributions will be used alternately with
the conventional notations throughout, but this is referred to as the change of
variables.

There is a commutative diagram

U

VI VJ .

πI πJ

νIJ

(2.25)
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Then we have

(πJ)⋆(FK(y))

(converted to a form)

=
∑
I

(πJ)∗(DI)

(diagram (2.25))

=
∑
I

(νIJ)∗ ◦ (πI)∗(DI)

(2.26)

(Note: ⋆, ∗ are two different operators.). Therefore for distributions in y-chart
we have

(πJ)⋆(FK(y)) =
∑
I

(νIJ)∗ ◦ (πI)∗(DI). (2.27)

Let’s calculate DI . Let

T ∧ ξ =
∑
P

GP (x)dµ
P⋄

x

(Note: GP (x) is some distribution)

=
∑
K

∑
P

GP (ν
−1(y))g−1

PK(y)dµK
⋄

y ,

where g−1
PK stands for the entry of the Jacobian matrix, Jx→y. Now we apply

above calculation for

FK(y) =
∑
P

GP (ν
−1(y))g−1

PK(y),

and
DI =

∑
P

GP (x)g
−1
PK(ν(x))gJI(x)dµ

I⋄

x . (2.28)

Since T is Lebesgue in x-chart, it satisfies both conditions of Definition 2.4
in x-chart, therefore (πI)∗(DI) is a distribution in x-chart. So it is is a bounded,
compactly supported L1 function of Radon-Nikodym on VI in x-chart. Due to
Proposition 2.2, so is

(νIJ)⋆ ◦ (πI)∗(DI)

on VJ in y-chart. Hence its sum over finitely many I,∑
I

(νIJ)∗ ◦ (πI)∗(DI)

is also a bounded, compactly supported L1 function of Radon-Nikodym on VJ
(which is in y-chart). By the formula (2.27) we complete the proof.
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Definition 2.7. Let X be a C∞ manifold. Denote the collection of Lebesgue
currents by

L (X ).

2.2 Examples

It is clear that L (X ) is a subspace. In this subsection we’ll provide three major
examples: 1) C∞ singular chains; 2) C∞ forms; 3) Cartesian product.

Theorem 2.8. Let c be a regular cell. Then c is Lebesgue. Furthermore C∞

chains are Lebesgue.

The theorem is one of major theorems whose proof follows from the follow-
ing two lemmas: 1) the proof of Lebesgue condition; 2) the proof of Randon-
Nikodym condition.

• Lebesgue condition

Lemma 2.9. A regular cell c satisfies Lebesgue condition.

Proof. It suffices to work in one chart. So we assume X = U = Rm is
equipped with the standard chart (a basis for the linear space) with coordinates
(x1, · · · , xm). We may assume the cell c is represented by a diffeomorphism
extended to K,

h : K → h(K) ⊂ U
∪ ∪
∆ → h(∆)

(2.29)

where ∆ is a polyhedron in an Euclidean space, and K is a neighborhood of ∆.
Let ξ be a test form in D(U) such that

dim(∆)− deg(ξ) = r.

Let VI ≃ Rr be an r-dimensional coordinates plane. We denote projection
U → VI by πI . Let dµ

J be the Euclidean volume form of another r-dimensional
coordinates plane. Then by the formula (2.17) the projection of a de Rham
distribution of c ∧ ξ to VI is the functional,

F : ϕ →
∫
c∧ξ ϕ(x)dµ

J (2.30)

where ϕ(x) = π∗
I (ϕ(v)) for a test function ϕ(v) ∈ D0(VI) ( Note: the index J

is associated with the de Rham distribution). Notice that

|
∫
c∧ξ ϕ(x)dµ

J |
= |
∫
c
ξ ∧ ϕ(x)dµJ |

= |
∫
∆p h

∗(ξ ∧ ϕ(x)dµJ)|
≤ C||ϕ||0,K

(2.31)
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where C is a constant and ||ϕ||0,K is semi-norm with the compact support K =
supp(ϕ(v)). Since the inequality (2.31) holds for all compact set K supporting
the ϕ, by Proposition 2.1.8, 1.3.11, [2], F is a measure. So if we let ϕ be a
characteristic function χ(E) of a subset set E ⊂ VI of Lebesgue measure 0, the
inequality (2.31) becomes

|
∫
F χ(E)dµJ | ≤ C

∫
h−1(E)

dµJ = 0. (2.32)

Hence F is absolutely continuous with respect to the Lebesgue measure dµJ

of VI . Next we estimate the Lebesgue function which is the Radon-Nikodym
derivative a.e.

lim
ϵ→0

|
∫
∆p h

∗(ξ ∧ χ(Bϵ)dµJ)|
dµI |χ(Bϵ)

(2.33)

where Bϵ is a bounded domain in VI of radius ϵ, and dµI |χ(Bϵ) is its Lebesgue
measure. Notice that∣∣∣∣∫

∆p

h∗(ξ ∧ χ(Bϵ)dµJ)
∣∣∣∣ ≤ C||ξ||0,K

∫
Bϵ

dµI .

Therefore ∣∣∣∣
∫
∆p h

∗(ξ ∧ χ(Bϵ)dµJ)∫
Bϵ
dµI

∣∣∣∣ ≤ C||ξ||0,K . (2.34)

Hence the Radon-Nikodym derivative dF
dµI is bounded when ξ is locally bounded.

This shows c satisfies the Lebesgue condition.

• Radon-Nikodym condition
First we state a technical definition. Let Rk1 be a subspace of Rr with a

direct sum decomposition
Rr = Rk1 ⊕ Rk2 . (2.35)

LetW ⊂ Rr be a bounded measurable set, and a a point on the boundary ofW .
We call an intersection W ∩ (B×Rk2) for a ball B ⊂ Rk1 an k1-neighborhood.

Definition 2.10. We say the domain W ⊂ Rr is a growing set along Rk1 at the
center a if there is a k1-neighborhood Ua containing a such that for any point
(b1,b2) ∈ Ua there is real number ϵ > 0, and an ϵ-line segment lying in W as
follows

Lϵ = {a+ t(b1, 0) : 0 < t ≤ ϵ} ⊂W. (2.36)

Lemma 2.11. We continue the notation in Lemma 2.9. A regular cell satisfies
the Radon-Nikodym condition.
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Proof. Let’s now prove the Radon-Nikodym condition. We may assume u = 0
and B = identity. Let ϕ(v) be the test function on VI with v ∈ VI . Recall
the projection πI : U → VI , Dλ the testing map which is a block-wise scalar
multiplication (see the formula (2.3)). Since being Lebesgue current is inde-
pendent choice of coordinates, we may choose a coordinates system so that the
composition

P : K → U → VI

is a diffieomorphism and K ≃ U ≃ Rr. Then by using Proposition 2.5, the
Radon-Nikodym number is the limit

lim
λ↱0

∫
c∧ξ

π∗
I

(
ϕ(D−1

λ (v))

det(DλB)

)
dµJ , (2.37)

where J is an arbitrary multi-index of length r, and Dλ(•) is the affine transfor-
mation as in (2.3) ( the integrand is the C∞ form on Rr). Because the integrand
can absorb the C∞ form ξ, so for the simplicity we may assume ξ has degree
0 and has value 1 on c̄, and I = J (note ξ is bounded by 1). Then after the
change of variables

D−1
λ (v) ⇒ v,

the integral in (2.37) is the evaluation of distributions on the plane VI ≃ Rr,∫
D−1

λ (P (∆))

ϕ(v)dµJ , (2.38)

where D−1
λ (P (∆)) is a cell for each λ, and dµJ the Lebesgue measure.

Next we use measure theory to show

Claim 2.12. The sequence of distributions

D−1
λ (P (∆))

converges weakly as a zigzag limit |λ| ↱ 0.

Proof. of claim 2.12: First we consider the general situation for a bounded
measurable set W as in the definition 2.10. Then

W = Ua ∪ U ca (2.39)

where Ua ⊂W is a ball centered at the point a, and U ca =W\Ua. Let δ > 0 be
the radius of Ua. Let Aλ for λ > 0 be the linear transformation

Rr → Rr (2.40)

represented by (
λIk1 0
0 Ik2

)
(2.41)
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in the decomposition
Rr = Rk1 ⊕ Rk2 ,

where Iki are the identity matrix of size ki × ki. Let N ∈ N be a natural

number. Since δ > 0, lim
N→∞

δ

N
= 0. Hence A 1

N
(U ca) as a distribution converges

to 0 weakly as N → ∞. For the other set, since Ua is a growing set, we have a
sequence of measurable sets

A1(Ua) ⊂ AN−1
N

(Ua) ⊂ · · · ⊂ A 1
N
(Ua) ⊂ · · · (2.42)

Let Wk1 = ∪NA 1
N
(Ua). Then Wk1 is a measurable set and A 1

N
(Ua) weakly

converges to the measurable set Wk1 . Therefore A 1
N
(W ) as N → ∞ converges

to a measurable set Wk1 . Hence Aλ(W ) as λ → 0 converges to a measurable
set Wk1 .

Then we repeat it for each division as follows. According to the group order
of the zigzag limit, there is a decomposition

Rr = Rj1 ⊕ · · · ⊕ Rjl (2.43)

Since P (∆) is a C∞ r-cell in Rr, its projection to each coordinate’s plane is
a growing set. So we can repeat above arguments for each block in the group
order

j1, j2, · · · , jl.

Then we obtain each limit denoted by each of

(
P (∆)

)
j1
,

((
P (∆)

)
j1

)
j2

, · · · ,

(((
P (∆)

)
j1

)
j2

· · ·

)
jl

is a growing set in Rr. Finally D−1
λ (P (∆)) converges weakly to the finite

Lebesgue measurable set (((
P (∆)

)
j1

)
j2

· · ·

)
jl

as |λ| ↱ 0. We complete the proof of Claim 2.12.

By the linearity, the existence is extended to all chains and cycles

Theorem 2.8 follows from Lemmas 2.9, 2.11.

Proposition 2.13. Let ω be a C∞ form. Then ω is Lebesgue.
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Proof. We may prove it locally. So let X = Rm. Let m− p = deg(ω). Let ξ be
any test form on Rm of degree p− r. Let

x1, · · · , xr, xr+1, · · · , xp, xp+1, · · · , xm

be a coordinates chart. Let VI have coordinates plane of components x1, · · · , xr.
For the simplicity, we may assume

ω =M(x)dxp+1 ∧ · · · ∧ dxm (2.44)

ξ = N(x)dxr+1 ∧ · · · ∧ dxp (2.45)

We obtain that the Lebesgue function of ω ∧ ξ is the fibre integral∫
(xr+1,··· ,xm)∈Rm−r

M(x)N(x)dxp+1 ∧ · · · ∧ dxm ∧ dxr+1 ∧ · · · ∧ dxp (2.46)

which is a C∞ function of x1, · · · , xr in the VI plane. Since the Lebesgue
function is C∞, the Radon-Nikodym condition is satisfied

Next we work with Cartesian product.

Lemma 2.14. We resume the set-up of Definition 2.4. In particular U is a
chart of the manifold X . Let LI be a bounded L1 function in L1

loc(U), where
L1
loc(·) denotes the set of locally integrable functions. If

ϕ ∈ D(U × Rk), (2.47)

(1) then Radon-Nikodym number RNϕ,LI
(y), which is a function of

y ∈ Rk lies in D(Rk).
(2) The convergence

lim
λ↱0

∫
v∈VI

LI(Dλ(v))ϕ(v,y)dµ
I (2.48)

is uniform for the bounded variable y ∈ Rk.

Proof. (1) Let ei, i = 1, · · · , n be a basis for Rk. Let h be a real number,

y =

n∑
i=1

yiei ∈ Rk.

Let’s consider the number

Ah =
RNϕ,LI

(y + hei)−RNϕ,LI
(y)

h
−RN ∂ϕ(y)

∂yi
,LI

(y)

= lim
|λ|↱0

∫
x∈VI

LI(Dλ(x))

(
ϕ
(
Dλ(x),y +∆yei

)
− ϕ

(
Dλ(x),y

)
h

−
∂ϕ
(
Dλ(x),y

)
∂yi

)
dµI
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Since ϕ is C∞ with a compact support,

ϕ
(
Dλ(x),y + hei

)
− ϕ

(
Dλ(x),y

)
h

−
∂ϕ
(
Dλ(x),y

)
∂yi

as h → 0 uniformly (with respect to λ,x) converges to 0. Together with the
bounded LI(Dλ(x)), we have

lim
∆y→0

Ah = 0.

Hence RNϕ,LI
(y) is differentiable and

∂RNϕ,LI
(y)

∂yi
= RN ∂ϕ(y)

∂yi
,LI

(y) (2.49)

By the iteration, RNϕ,LI
(y) is C∞. Since ϕ(x,y) is both bounded and com-

pactly supported, so is RNϕ,LI
(y).

(2) Let’s continue from part (1). By Theorem 6, Chapter II, §7, [3], there is
a sequence of test functions

ψn1 (v) ∈ D(VI), ψ
n
2 (y) ∈ D(Rk) (2.50)

such that
ψn1 (v)ψ

n
2 (y) → ϕ(v,y) as n→ ∞

uniformly on the compact set. Thus for any ϵ > 0, since LI is bounded there is
an N such that

|
∫
v∈VI

LI(Dλ(v))

(
ψN1 (v)ψN2 (y)− ϕ(v,y)

)
dµI | ≤ ϵ (2.51)

for all λ. Taking the limit |λ| ↱ 0, we have inequality

|ψN2 (y)RNψN
1 ,LI

−RNϕ,LI
(y)| ≤ ϵ (2.52)

(which does not involve λ). Next we write the number ψN2 (y)RNψN
1 ,LI

as a

zigzag limit |λ| ↱ 0:

ψN2 (y)
∫
v∈VI

LI(Dλ(v))ψ
N
1 (v)dµI −→ ψN2 (y)RNψN

1 ,LI
(2.53)

whose convergence is independent of y. Hence the convergence∫
v∈VI

LI(Dλ(v)ϕ(v,y)dµ
I → RNϕ,LI

(2.54)

as |λ| ↱ 0 is independent of y.
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Theorem 2.15. Let Y be another C∞ manifold. If currents T1, T2 are Lebesgue
in X ,Y respectively, so is T1 ×T2 in X ×Y, where T1 ×T2 is the wedge product
deduced from the tensor product of two currents.

Proof of Theorem 2.15. There are 3 steps.
(1) SETUP . By Proposition 2.6, it suffices to work with one chart. So we
assume X = Rm whose points are denoted by x and objects are labeled by x.
We also assume Y = Rn whose points are denoted by y and objects are labeled
by y. For the clarity, we’ll use the indexes in the following convention.

(I) Single indexes denote objects from each individual manifold X or Y.
Indexes p, k with p ≥ k denote the objects in X , q, l with q ≥ l in Y.

(II) Double indexes denote the objects from the product X × Y.
(III) V•, V•,• are subspaces, and dµ•, dµ•,• are the Lebesgue measures for

subspaces inherited from the fixed Lebesgue measures on X ,Y.

Recall T1, T2 are currents. Let’s assume dim(T1) = p, dim(T2) = q. We may
assume the form ξ is in the format

ξ = ζ(x,y)dµp−k,q−l (2.55)

with the function ζ ∈ D(X × Y) where dµp−k,q−l is the Lebesgue measure for
some subspaces Vp−k × Vq−l ⊂ X × Y. Let ξx ∈ D(X ), ξy ∈ D(Y) be functions
such that they are equal to 1 on the projections of supp(ζ) to X ,Y. We denote
ξxT1 by Tx and ξyT2 by Ty. They all have compact supports. Then

(T1 × T2) ∧ ξ = (Txdµp−k × Tydµq−l)ζ(x,y) (2.56)

where
Txdµp−k(resp. Tydµq−l)

is the abbreviation for

Tx ∧ dµp−k(resp. Ty ∧ dµq−l).

Let
πk,l : X × Y → Vk × Vl (2.57)

be the projection. Let dµx, dµy be the Euclidean volume forms of other coordi-
nates planes of dimensions k, l in X ,Y respectively. By “other”, it means the
the subspaces may not be the same as Vk, Vl. Then by the formula (2.17), the
projection of a de Rham distribution of current (T1 × T2) ∧ ξ to Vk,l = Vk × Vl
is defined to be the functional

F : ϕ →
∫
(Txdµp−k×Tydµq−l)∧ζ(x,y)

π∗
k,l(ϕ(xk,yl))dµx ∧ dµy

=
∫
Tydµq−l

(∫
(Txdµp−k)∧ζ(x,y) π

∗
k,l(ϕ(xk,yl))dµx

)
dµy.

(2.58)
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where ϕ(xk,yl) is a test function on the coordinates plane Vk,l, iteration is well-
defined for the compactly supported currents on C∞ forms. In the following
we’ll address the properties of the distribution F .

(2) LEBESGUE CONDITION .
By Theorem 6, Chapter II, §7, [3], there are sequences of test functions

ζNx (x), ζNy (y), N ∈ N (2.59)

on X ,Y respectively such that they are bounded for all variables N,x,y and

ζNx (x)ζNy (y) → ζ(x,y) uniformly, as N → ∞

Then for any natural number N , we rewrite∫
F ϕdµx ∧ dµy =

∫
Tydµq−l

(∫
(Txdµp−k)∧

(
ζ(x,y)−ζNx (x)ζNy (y)

) π∗
k,l(ϕ(xk,yl))dµx

)
dµy

+
∫
Tydµq−l∧ζNy (y)

(∫
Txdµp−k∧ζNx (x)

π∗
k,l(ϕ(xk,yl))dµx

)
dµy.

(2.60)
Now we let LNk (xk),LNl (yl) be the Lebesgue functions of de Rham distributions
of the currents

Txdµp−k ∧ ζNx (x), Tydµq−l ∧ ζNy (y)

on Vk, Vl respectively. The Lebesgue condition implies they are bounded for all
N , i.e. there is constant M such that

|LNk (xk)| ≤M
|LNl (yl)| ≤M

(2.61)

for all N and bounded xk,yl a.e. By part (1) of Lemma 2.14, the second term
of (2.60) above continues to be∫

Tydµq−l∧ζNy (y)

(∫
Txdµp−k∧ζNx (x)

ϕ(xk,yl)dµx

)
dµy

=

∫
Vk,l

LNk (xk)LNl (yl)π
∗
k,l(ϕ(xk,yl))dµk ∧ dµl .

On the other hand, for the first term of (2.60), there is a sequence of numbers
aN → +∞ as N → +∞ such that the set of forms

aN ((ζ(x,y)− ζNx (x) ∧ ζNy (y))

for all N ∈ N is locally bounded. Hence the Lebesgue functions of two currents

aN (Txdµp−k) ∧
(
ζ(x,y)− ζNx (x) ∧ ζNy (y)

)
, Tydµq−l

on Vk, Vl are bounded for all N (the Lebesgue function on Vk is dependent of
y, but it also bounded for all y.). So the sequence of numbers

aN

∫
Tydµq−l

(∫
(Txdµp−k)∧

(
ζ(x,y)−ζNx (x)∧ζNy (y)

) π∗
k,l(ϕ(xk,yl))dµx

)
dµy
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for all N is bounded. Thus the sequence of real numbers∫
Tydµq−l

(∫
(Txdµp−k)∧

(
ζ(x,y)−ζNx (x)∧ζNy (y)

) π∗
k,l(ϕ(xk,yl))dµx

)
dµy

converges to 0 as N → ∞. Therefore∫
F
ϕdµx ∧ dµy = lim

N→∞

∫
(xk,yl)∈Vk,l

LNk (xk)LNl (yl)π
∗
k,l(ϕ(xk,yl))dµk ∧ dµl.

(the Lebesgue integral exists due to the part (1) of Lemma 2.14). Then we
apply the Lebesgue integral to estimate∣∣∣∣∫

F
ϕdµx ∧ dµy

∣∣∣∣ ≤ C||ϕ||0,K (2.62)

for some constant C. By Proposition 2.1.8, 1.3.11, [2], F is a distribution of
order 0, thus a measure. If χ is a characteristic function of a set with 0 Lebesgue
measure, the inequality (2.62) implies∫

F
χdµx ∧ dµy = 0.

Thus F is a measure absolutely continuous with respect to the Lebesgue mea-
sure. The Lebesgue integral also shows that the Radon-Nikodym derivative has
inequality ∣∣∣∣ dFdµk,l

∣∣∣∣ ≤ C ′M2 (2.63)

for some constant C ′, where dµk,l is the Lebesgue measure for Vk,l and the
bound M is from (2.61). We complete the proof of the Lebesgue condition.

(3) RADON −NIKODYM CONDITON . Next we prove the Radon-Nikodym
condition. Let

Lk,l(xk,yl) :=
dF
dµk,l

be the Lebesgue function, where dµk,l is the Lebesgue measure of the plane
Vk,l. Let Dλ1

, Dλ2
are testing maps for Euclidean spaces Vk, Vl as in (2.3). Let

D(λ1,λ2) be the testing map for Vk,l. Denote its identity extension to Rm × Rn
by the same notation D(λ1,λ2). Let

CN(λ1,λ2)
=

∫
(xk,yl)∈Vk,l

LNk (Dλ1
(xk))LNl (Dλ2

(yl))π
∗
k,l(ϕ(xk,yl))dµk ∧ dµl.

(2.64)
Then it is sufficient to prove the zigzag convergence of

lim
N→∞

CN(λ1,λ2)
(2.65)
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as (λ1,λ2) ↱ 0, i.e. the convergence of the iterated limit

lim
(λ1,λ2)↱0

lim
N→∞

CN(λ1,λ2)
. (2.66)

So we consider the other order

lim
N→∞

lim
(λ1,λ2)↱0

CN(λ1,λ2)
.

Let
RN = lim

(λ1,λ2)↱0
CN(λ1,λ2)

. (2.67)

Using Lemma 2.14 for the iterated evaluation, we see RN exists and is bounded
for all N .

Claim 2.16. The sequence

RN1 −RN2 , Ni ∈ N.

converges to 0 as (N1, N2) → (∞,∞).

Proof of Claim 2.16. Let a(N1,N2) be a sequence of real numbers such that

lim
(N1,N2)→(∞,∞)

a(N1,N2) = ∞

and
a(N1,N2)

(
ζN1
x (x) ∧ ζN1

y (y)− ζN2
x (x) ∧ ζN2

y (y)
)

is bounded for all N1, N2. Then

a(N1,N2)(RN1 −RN2)

= lim
(λ1,λ2)↱0

∫
(Txdµp−k×Tydµq−l)∧a(N1,N2)

(
ζ
N1
x ∧(x)ζ

N1
y (y)−ζN2

x (x)∧ζN2
y (y)

) η(λ1,λ2)

where η(λ1,λ2) is the C
∞ form

D∗
(λ1,λ2)

(π∗
k,l(ϕ(xk,yl))dµk ∧ dµl).

Let J(N1,N2) be a Lebesgue function of the current(
Txdµp−k × Tydµq−l

)(
a(N1,N2)

(
ζN1
x (x) ∧ ζN1

y (y)− ζN2
x (x) ∧ ζN2

y (y)
))

on Vk,l. Since

a(N1,N2)

(
ζN1
x (x) ∧ ζN1

y (y)− ζN2
x (x) ∧ ζN2

y (y)
)
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are C∞ forms bounded locally, by step 2 above J(N1,N2) is a bounded L1 form.
Thus

|
∫
(xk,yl)∈Vk,l

J(N1,N2)(D(λ1,λ2)(xk,yl))π
∗
k,l(ϕ(xk,yl))dµk ∧ dµl|

= a(N1,N2) lim
(λ1,λ2)↱0

|
∫(
Txdµp−k×Tydµq−l

)
∧
(
ζ
N1
x (x)∧ζN1

y (y)−ζN2
x (x)∧ζN2

y (y)
) η(λ1,λ2)|

≤M ′′

for a positive number M ′′. Therefore

a(N1,N2)(RN1
−RN2

)

is bounded. Notice
lim

(N1,N2)→(∞,∞)
a(N1,N2) = ∞.

Thus
lim

(N1,N2)→(∞,∞)
(RN1 −RN2) = 0.

So RN converges to a real number L. This shows the limit

lim
N→∞

lim
(λ1,λ2)↱0

CN(λ1,λ2)
= L

exists.

Now by the same proof the convergence above, the convergence of another
limit

lim
N→∞

CN(λ1,λ2)
(2.68)

is uniformly independent of λ1,λ2. Hence the iterated limit in the opposite
order,

lim
(λ1,λ2)↱0

lim
N→∞

CN(λ1,λ2)

exists and is equal to the limit,

lim
N→∞

lim
(λ1,λ2)↱0

CN(λ1,λ2)
= L. (2.69)

We complete the proof.
□

Proposition 2.17. If T is Lebesgue and ω is C∞, then the intersection

T ∧ ω (2.70)

is Lebesgue.
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Proof. This is the tautology. Let ξ ∈ D(U). Notice ω ∧ ξ ∈ D(U). Then the
projection J of de Rham distributions of

(T ∧ ω) ∧ ξ

is the same as that of
T ∧ (ω ∧ ξ).

We complete the proof.

Example 2.18. There exist currents that are not Lebesgue.
In the Euclidean space Rm of coordinates x1, · · · , xp, · · · , xm, we let

T = δ0dxp+1 ∧ · · · ∧ dxm

with δ-function δ0 of the origin 0 of Rm. Let V be the coordinates plane with
coordinates x1, · · · , xp, and π : Rm → V be the projection. Let ξ ∈ D(Rm) with
ξ(0) ̸= 0. So a projection of the de Rham distribution π⋆(ξδ0) is equal to

δ0ξ(0). (2.71)

Hence π⋆(ξδ0) is the distribution δ0ξ(0), also a measure on V with the Borel
σ-algebra of V . Now we consider the two measures for V on the same σ-algebra.
When they are applied to the singleton set, the origin of V , the Lebesgue measure
is 0, but the projection measure is ξ(0) ̸= 0. Hence

π⋆(ξδ0) ̸≪ Lebesgue measure.

So T does not satisfy the Lebesgue condition.

3 De Rham’s Regularization

G. de Rham introduced the notion of currents that connects the singular chains
and C∞ forms. The connection is through the de Rham’s regularization which
consists of two operators: Rϵ, Aϵ ( see chapter III, [3]). They are the origi-
nal parts of de Rham theory which serves as the foundation to the differential
geometry. However since we need to go beyond them, let’s have a review.
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3.1 Construction

Definition 3.1. Let X be a connected, oriented manifold. Let ϵ be a small
positive number. Linear operators Rϵ and Aϵ on D ′(X ) are called de Rham’s
regulator and homotopy operator respectively if they satisfy

(1) a homotopy formula

RϵT − T = bAϵT +AϵbT. (3.1)

where b is the boundary operator.
(2) supp(RϵT ), supp(AϵT ) are contained in any given neighborhood of

supp(T ) provided ϵ is sufficiently small.
(3) RϵT is C∞;
(4) If T is Cr, AϵT is Cr.
(5) If a smooth differential form ϕ varies in a bounded set and ϵ is bounded

above, then Rϵϕ,Aϵϕ are bounded.
(6)

lim
ϵ→0

RϵT = T

in the weak topology of D ′(X).�

Theorem 3.2. (G. de Rham) The operators Rϵ, Aϵ exist.

Proof. In the following we review the constructions of operators Rϵ and Aϵ. The
verification of conditions (1)-(6) in [3] will be omitted. There are three steps in
the construction.

Step 1: Local construction, i.e. the construction in X = Rm.
Step 2: Preparation. To prepare for the gluing, we “shrink” the operators

to a bounded domain B in Rm with boundary.
Step 3: Gluing. Assume X is covered by the bounded domain with

boundary Bi, countable i. Then glue the operators in each Bi to
obtain the global

Rϵ, Aϵ (3.2)

Step 1: The most part of this step is originated from Schwartz’s work in
[4]. But we’ll explore it a little further. Let X = Rm be the Euclidean space
of dimension m with the standard linear structure. Let x = (x1, · · · , xm) be
its Euclidean coordinates, and vectors and points in Rm will be denoted by

�De Rham’s convergence in [3] is a little stronger than the weak convergence. But no
matter how strong the convergence is, the non-triviality lies ahead.
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the bold letters. Let T be a homogeneous current of degree p on Rm. Let
f(x) ∈ D(X) satisfying ∫

x∈Rm

f(x)dµx = 1, (3.3)

where dµx is the Euclidean volume form

dx1 ∧ · · · ∧ dxm.

We assume f is symmetric,§ i.e. f(x) = f(−x) Let

ϑ1(x) = f(x)dµx. (3.4)

Denote
ϑϵ(x) = ϑ1(

x

ϵ
). (3.5)

be the m-form on Rm.

Next we define two operators on the differential forms of Euclidean space
Rm based on C∞ maps sy(x) below. Let

sy(x)

be C∞ maps parametrized by y ∈ Rm,

Rm → Rm
x → sy(x)

such that all partial derivatives of the components with respect to the variables
of x are continuous functions in (x,y). Let ϕ be a test form on Rm. For such
maps sy(x), we denote two operations on the form ϕ

s∗y(ϕ), and

S∗
y(ϕ) = Proj∗(s

∗
(t,y)(ϕ)), t ∈ [0, 1]

where Proj : [0, 1]×X → X is the projection, Proj∗ is its fibre integral, and

s(t,y) : [0, 1]×X → X
(t, x) → sty(x).

Then we define operators Rϵ, Aϵ on currents T by
∫
RϵT

ϕ =
∫
x∈T

(∫
y∈Rm ϑϵ(y) ∧ s∗yϕ(x)

)
,∫

AϵT
ϕ =

∫
x∈T

(∫
y∈Rm ϑϵ(y) ∧ S∗

yϕ(x)

) (3.6)

§Symmetry was mentioned but not required in de Rham’s work. But it is required in our
work for the communitativity.
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where ϕ is a test form. We should note that
(1) the continuity assumption about sy(x) guarantees the existence of

(3.6),
(2) also equations {

deg(s∗y(ϕ)) = deg(ϕ),

deg(S∗
y(ϕ)) = deg(ϕ)− 1

(3.7)

imply that {
dim(Rϵ(T )) = dim(T ),

dim(Aϵ(T )) = dim(T )− 1.
(3.8)

If furthermore the map

Rm × Rm → Rm × Rm
(x,y) → (x, sy(x))

is a diffeomorphism, there is a change of variables{
sy(x) ⇒ x

y ⇒ s−1(x,y)
(3.9)

(replacement of sy(x) with x; y with s−1(x,y)) where s−1 : Rm×Rm → Rm is
C∞ and satisfies ss−1(x,y)(x) = y. Then the first integral of (3.6) shows that

RϵT =

∫
x∈T

ϑϵ(s
−1(x,y)) (3.10)

is a C∞ form. The form ϑϵ(s
−1(x,y)) as a form in variables x,y is the kernel

(p71, [3]) of Rϵ. We should make a note that the currents’ evaluation (3.10) is
defined through double currents in the same way as the fibre integrals of C∞

forms under the projection X × X → X .

In the step 1 we use
sy(x) = x+ y

for the particular case of Rm, where the + is from the standard linear structure
of Rm. Then Rϵ is the convolution. Next we sketch the rest of two steps in the
globalization, where the general sy(x) will be used.

Step 2: Choose the unit ball B ⊂ Rm diffeomorphic to Rm. Let h be the
specific diffeomorphism

Rm → B,

defined on p66, [3]. Denote the sy(x) in step 1 by s+y (x). Then we define the
new C∞ map

sy(x) =

{
hs+y h

−1(x) for x ∈ B
x for x /∈ B.

(3.11)
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We would like to point out that sy(x) satisfies assumption. Then we can define
the operators RBϵ , A

B
ϵ depending on B in the same way (with a test form ϕ):
∫
RB

ϵ T
ϕ =

∫
x∈T

(∫
y∈Rm ϑϵ(y) ∧ s∗yϕ(x)

)
,∫

AB
ϵ T

ϕ =
∫
x∈T

(∫
y∈Rm ϑϵ(y) ∧ S∗

yϕ(x)

)
.

(3.12)

Then the operators RBϵ , A
B
ϵ will satisfy

(a) properties (1), (4), (5) and (6) in definition 3.1.
(b) RBϵ (T ) is C

∞ in B, RBϵ (T ) = T in the complement of B̄;
(c) if T is Cr in a neighborhood of a boundary point of B, ABϵ (T ) will have

the same regularity in the neighborhood.

Step 3: Cover the X with countable open sets Bi (locally finite). Now we
regard each Bi as a subset of B in step 2. Let a neighborhood Ui of Bi. Let hi
be the diffeomorphic-to-image map

Ui → Rm
∪ ∪
Bi → B.

Let gi ≥ 0 be a function on X , which is 1 on Bi and supported in Ui. Let
T ′ = giT and T ′′ = T − T ′. Then we let

RiϵT = (h−1
i )∗ ◦RBϵ ◦ (hi)∗T ′ + T ′′

AiϵT = (h−1
i )∗ ◦ABϵ ◦ (hi)∗T ′.

( Note: h−1
i is well-defined because hi is a diffeomorphic-to-image map). Finally

we glue them together by taking the composition,

R
(N)
ϵ = R1

ϵ ◦ · · · ◦RNϵ ,
A

(N)
ϵ = R1

ϵ ◦ · · · ◦RNϵ ◦ANϵ .
(3.13)

Then we take the limit as N → ∞ with respect to the compact support to
obtain the well-defined, global operator Rϵ and Aϵ.

¶

Definition 3.3. ( de Rahm data)
(a) We call Rϵ from Theorem 3.2 the de Rham’s regulator, Aϵ from

Theorem 3.2 the de Rham’s homotopy operator, and the
associated regularization the de Rham’s regularization. All operators
Rϵ, Aϵ are chosen to be de Rham’s. (The general
operators from definition 3.1 are not necessarily de Rham’s).

¶In [3], for each open set Ui there is a different positive ϵi. We used the same number ϵ
for all Ui. This difference should be noticed.
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(b) We define de Rham data to be all items in the construction of
de Rham’s regularization operators Rϵ, Aϵ. More specifically it
includes
(1) the covering Bi ⊂ Ui with the order of countable i,
(2) the diffeomorphism hi : Ui → Rm, and functions gi with value

1 on Bi,
(3) for each Bi, another diffeomorphism hi : Bi ≃ Rm with Euclidean

coordinates,
(4) functions fi in each Bi ≃ Rm as in the first step, called

convolution functions, gi, hi called the gluing data.
(c) The covering Bi ⊂ Ui equipped with all the items (1)-(4) in de Rham

data is called the de Rham covering. Each pair Bi ⊂ Ui with (1)-(4)
is called a de Rham chart.

Remark The de Rham data gives a covering that regularizes the piece of
T supported in Bi in each chart Ui independently and operates as an identity
outside of Bi. There is “glue” (such as gi) at each chart to glue pieces together
by taking the composition. But there is no relation among pieces.

G. de Rham further showed in chapter III, §17, [3],

Corollary 3.4. The de Rham’s operator Rϵ constructed in Theorem 3.2 is a
regularizing operator, i.e. there is a C∞ form ϱϵ(x,y) on X ×X , called the C∞

kernel of Rϵ, such that as currents,

RϵT =

∫
y∈T

ϱϵ(x,y)

where the current’s evaluation on the right is defined as in Theorem 9, [3]
through a double form.

Remark Note: there is a sign factor when the form ϱϵ(x,y) is switched
to the double form for evaluation. Kernel of an operator is a crucial technical
notion defined by de Rham in [3]. We list its definition in the Appendix.

3.2 Kernel of de Rham’s regulator

Definition 3.5. Let ω be a C∞ form of degree p on a manifold X . We say ω
is a local constant slicing, if at each point, there is an open set U containing the
point such that

ω|U = π∗(θ) (3.14)

where π : U → V ≃ Rp is a C∞ map, and θ is a C∞ form on V .
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Remark A form of a local constant slicing is a particular type of forms
invariant under the C∞ diffeomorphisms. For instance we notice that the dif-
ferential operation commutes with the pullback π∗. Hence

dω|U = π∗(dθ) = 0

due to the maximal degree of θ. Therefore a form of a local constant slicing
must be closed. Hence it represents a cohomology class.

Lemma 3.6. Let X0 be the union of countably many proper submanifolds of
dimension strictly less than dim(X ). Let ω be a C∞ form on X such that for
each point q ∈ X there is a chart U containing q and the equality (3.14) holds
on the submanifold U − (X0 ∩U). Then ω is still a local constant slicing on X .

Proof. Let U be the neighborhood as above. By the assumption there are C∞

forms θ of maximal degree on coordinates planes V such that

ω|U\U∩X0
= π∗

(
θ|π(U\U∩X0)

)
(3.15)

Notice both sides have extension to U by the continuity. Taking the closure (of
topology of X ) both sides, we complete the proof.

We’ll show the kernel of Rϵ is not only C
∞, but also a local constant slicing,

therefore closed.

Proposition 3.7. Let ϱϵ be the C∞ kernel of de Rham’s regulator Rϵ. Then
ϱϵ is a local constant slicing. Furthermore there is a chart U in the de Rham
covering for a neighborhood of each point such that

ϱϵ|U (x,y) = ϱ1|U (
x

ϵ
,
y

ϵ
) (3.16)

where x,y are points in the chart.

Remark. The C∞ kernel ϱϵ is a closed form. By the homotopy formula
(3.1) it represents the class of the diagonal in the cohomology group of X ×X .
But ϱϵ is not the de Rham’s regularization of the diagonal.

Proof. For this particular local constant slicing ϱϵ, we’ll give a concrete descrip-
tion in the following. It shows that the composition (3.13) for gluing is a local
fibre integral.
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Denote the boundary of each local ball Bi in the de Rham data by ∂i. Let
∂ =

∑
i ∂i. By Lemma 3.6, it suffices to consider the submanifold X − ∂. So let

q ∈ X − ∂. Let Uq ⊂ X − ∂ be a small neighborhood of q. Consider the kernel
ϱqϵ(x,y) of the de Rham’s regulator

Rϵ = R1
ϵ ◦ · · · ◦Rnϵ (3.17)

restricted to Uq × Uq, where N is finite because the covering is locally finite.
Because we exclude ∂, there are two cases for the points q. If q ̸∈ Bi for some i,
Riϵ|Uq

by the definition is the identity. If q ∈ Bi for some i, then each Riϵ|Uq
has

the C∞ kernel ϱiϵ(x,y) where y is in the second copy of Uq. Suppose there are n
regulators in (3.17), and they are in the order B1, B2, · · · , Bn. Let’s denote the
coordinates for each Ui ⊃ Bi by the same letter xi for which we should restrict
ourselves to the domain Bi . The kernel of each Riϵ is

ϑi1(
xi
ϵ

i
− yi

ϵ
),

which means for a current T ,

RiϵT =

∫
yi∈T

ϑi1(
xi
ϵ

i
− yi

ϵ
)

where the subtraction
i
− ( also

i
+), scalar multiplication •

ϵ are from the linear
structure of Ui in de Rham data (they are from the de Rham data). Next we
glue all pieces. The kernel ϱϵ of Rϵ = R1

ϵ ◦ · · · ◦ Rnϵ inside B1 ∩ · · · ∩ Bn is the
fibre integral

ϱϵ =

∫
(x2,··· ,xn)∈(Rm)⊕n−1

ϑ11(
x1

ϵ

1
− x2

ϵ
) ∧ ϑ21(

x2

ϵ

2
− x3

ϵ
) ∧ · · ·

∧ ϑn−1
1 (

xn−1

ϵ

n−1
− xn

ϵ
) ∧ ϑn1 (

xn
ϵ

n
− yn

ϵ
), (3.18)

whose degree is m. So ϱϵ is the fibre integral of the local C∞ form,

ϑ11(
x1

ϵ

1
− x2

ϵ ) ∧ ϑ
2
1(

x2

ϵ

2
− x3

ϵ ) ∧ · · · ∧ ϑn−1
1 (xn−1

ϵ

n−1
− xn

ϵ ) ∧ ϑn1 (xn

ϵ

n
− yn

ϵ )
∥

ϑ1ϵ(x1

1
− x2) ∧ ϑ2ϵ(x2

2
− x3) ∧ · · · ∧ ϑn−1

ϵ (xn−1

n−1
− xn) ∧ ϑnϵ (xn

n
− yn)

denoted by
ς(q)ϵ , (3.19)

(of degree mn), in the projection of the Cartesian product

P1 : (Rm)⊕(n+1) → Rmx1
⊕ Rmyn

(3.20)

where (Rm)⊕(n+1) have global coordinates

x1, · · · ,xn,yn,
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and Rmx1
,Rmyn

are the first and last copies. Above argument is a technical de-
scription of the kernel ϱϵ.

To associated a local constant slicing form, we construct a commutative
diagram by first defining the diffeomorphism

κ1 : (Rm)⊕n+1 → (Rm)⊕n ⊕ Rm

(x1, · · · ,xn,yn) → (x1

1
− x2, · · · ,xn

n
− yn,yn),

where yn are the coordinates for the last copy Rm, and each copy Rm has its
own linear structure. Then the projection (3.20) yields

ϱϵ = (P1)∗(ς
(q)
ϵ ).

We denote the coordinates’ components in the target space (Rm)⊕n ⊕ Rm
by

x′
1, · · · ,x′

n,yn.

Notice the map has rank m(n− 1), and ς
(q)
ϵ is the pullback form by κ1:

ς(q)ϵ = ϑ1ϵ(x
′
1) ∧ ϑ2ϵ(x′

2) ∧ · · · ∧ ϑnϵ (x′
n). (3.21)

So there is a commutative diagram

(Rm)⊕n+1 κ1−→ (Rm)⊕n ⊕ Rm
P1↓ (P2,id)↓

Rmx1
⊕ Rmyn

(κ2,id)−−−−→ Rm ⊕ Rmyn

(3.22)

where
κ2 : (x1,yn) → x1

n
− yn

and

P2 : (x′
1, · · · ,x′

n) → x′
1

1
+ x′

2

2
+ · · ·

n−1
+ x′

n

is the map onto the first copy Rm. Then the commutativity of (3.22) yields

ϱϵ = (P1)∗(ς
(q)
ϵ ) = (κ2, id)

∗
((

(P2, id) ◦ κ1
)
∗(ς

(q)
ϵ )

)
. (3.23)

In (3.23),

(
(P2, id) ◦ κ1

)
∗
(ς

(q)
ϵ ) is a trivial pullback of a form on Rm. Hence ϱϵ

is a local constant slicing. This completes the proof.
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Example 3.8. Let X = Rn be equipped with the standard linear basis e1, · · · , en.
Let D be the particular n dimensional coordinate’s plane that transversally meets
the diagonal ∆Rn at the origin (0,0) of Rn × Rn. Explicitly, if e1i , e

2
i are the

standard linear bases as above, for the first and second copies of Rn in Rn×Rn,
then D is the subspace spanned by vectors e1i − e2i for i = 1, · · · , n. Let

κ : Rn × Rn → D

be the orthogonal projection of the product coordinates. Notice D isomorphic
to Rn (as a subspace). So D has an isomorphic de Rham data from X . In
particular, let dµ be the Lebesgue measure of D. Let f be a C∞ function on
D with a compact support in a ball of the origin such that f is symmetric with
respect to the linear structure and∫

D

fdµ = 1.

( ({ei}, f) is a de Rham data of X ). For a positive number ϵ, the kernel ϱϵ of
the de Rham’s regulator is

κ∗
(

1

ϵn
f(
w

ϵ
)dµ

)
where w is the coordinate of D in the basis e1i − e2i for i = 1, · · · , n.

4 The intersection of currents

4.1 Convergence of regularization

Theorem 4.1.
Let X be a manifold endowed with de Rham data. Let T1, T2 be two homo-

geneous Lebesgue currents of dimensions p, q respectively.
(1) Let ϕ be a test form of degree p+ q −m. Then

lim
ϵ→0

∫
T1

RϵT2 ∧ ϕ (4.1)

exists.
(2) If ϕ is in a set of bounded forms in D(X ),

lim
ϵ→0

∫
T1

RϵT2 ∧ ϕ, (4.2)

is bounded.
(3) Lebesgue currents are of order 0, i.e. for the Lebesgue current T and
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ϕ ∈ D(U), there is an estimate∣∣∣∣∫
T

ϕ

∣∣∣∣ ≤ C||ϕ||0,K

where K is a compact set of a chart U , ||ϕ||0,K is the supreme of absolute
values of coefficients of ϕ in the chart, and C is a constant independent
of ϕ.

Proof. (1) Let T1, T2 are homogeneous currents of dimensions p, q respectively.
Then ∫

T1

RϵT2 ∧ ϕ = (−1)m
∫
(T1×T2)∧ϕ

ϱϵ(x,y). (4.3)

By Proposition 3.7, the kernel ϱϵ(x,y) of Rϵ is a local constant slicing. Thus
there exists countable, locally finite open covering U of X such that

ϱϵ(x,y)|U×U = ϱ1(
x

ϵ
,
y

ϵ
)|U×U = π∗(θ(

v

ϵ
)), (4.4)

where π : U × U → V is a C∞ map to V ≃ Rm, and θ is a C∞ m-form on
V . By a partition of unity it suffices show the convergence of (4.3) as ϵ → 0
supported in one open set U . That is the convergence of∫

(T1×T2)∧ϕ
π∗(θ(

v

ϵ
)). (4.5)

where v is the variable of θ. Now we consider a C∞ map

π : U × U → V.

The projection of a de Rham distribution of the current T1×T2∧ϕ satisfies the
Lebesgue condition that gives a bounded, compactly supported L1 function L
on V , and the Radon-Nikodym condition further implies that the limit

lim
ϵ→0

∫
v∈V

L(ϵv)θ(v)

that is

lim
ϵ→0

∫
(T1×T2)∧ϕ

π∗(θ(
v

ϵ
)) (4.6)

exists. We complete the proof of part (1).
(2) Now we assume ϕ is in a set in D(U) bounded to order 0. By the Lebesgue

condition, L is bounded. Thus the local formula (4.6) is also bounded. Hence

lim
ϵ→0

∫
T1

RϵT2 ∧ ϕ

is bounded.
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(3) Continue from part (2). Notice for T2 = 1,
∫
T1
ϕ is equal to (4.6). Let

the ϕ varies in a compact support K ⊂ U . We consider the

lim
ϵ→0

∫
(T1×X)∧ ϕ

||ϕ||0,K

π∗θ(
v

ϵ
).

Since ϕ
||ϕ||0,K is bounded to order 0, by the Lebesgue condition of T1, the

Lebesgue functions of T1 ×X ∧ ϕ
||ϕ||0,K on V are bounded. Hence∣∣∣∣limϵ→0

∫
(T1×X)∧ ϕ

||ϕ||0,K

π∗θ(
v

ϵ
)

∣∣∣∣ ≤ C.

where C is a constant independent of ϕ. Hence∣∣∣∣∫
T1

ϕ

∣∣∣∣ = ∣∣∣∣limϵ→0

∫
(T1×X)∧ϕ

π∗θ(
v

ϵ
)

∣∣∣∣ ≤ C||ϕ||0,K .

We complete the proof.

4.2 The intersection

Definition 4.2. Let T1, T2 be homogeneous Lebesgue currents on a manifold X
endowed with de Rham data. By Theorem 4.1, the functional on D(X ),

ϕ→ lim
ϵ→0

∫
T1

RϵT2 ∧ ϕ

is linear, continuous. Therefore we define the intersection current

[T1 ∧ T2] (4.7)

by the formula ∫
[T1∧T2]

ϕ = lim
ϵ→0

∫
T1

RϵT2 ∧ ϕ (4.8)

for a test form ϕ. Hence there is a well-defined bilinear map, “current’s inter-
section” satisfying

C(X)× C(X) → D ′(X )
(T1, T2) → [T1 ∧ T2],

dependent of de Rham data, where D ′(X ) denotes the space of currents and
L (X) the subspace Lebesgue currents.
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Remark The intersection [· ∧ ·] and de Rham’s regularization Rϵ, Aϵ all
depend on the de Rham data. We’ll omit the notation for this dependence by
fixing a data in general arguments, but will make a note in a particular case
where the multiple de Rham data is necessary.

Proposition 4.3. If T1, T2 are Lebesgue, so is

[T1 ∧ T2].

Remark The proposition extends Proposition 2.17.

Proof. We recall and continue the setting in Theorem 4.1. By the partition of
unity, we may assume

[T1 ∧ T2]

has a compact support in a small neighborhood U of a chart. For the Lebesgue
condition we may take ξ = 1 and [T1 ∧ T2] has a single de Rham distribution.
Next we have a projection to set up the Lebesgue condition. Let W ⊂ U be
a coordinates plane of the dimension dim[T1 ∧ T2], and πW : U → W the
projection. Then it suffices to consider the projection (πW )∗[T1 ∧T2] which has
maximal degree, so it is regarded as a distribution, denoted by IW . Then the
functional IW is

ϕ→
∫
(πW )∗[T1∧T2]

ϕdµ

where ϕ is a test function on W and dµ is the volume form of W . According to
the formula (4.6), IW is equal to

ϕ→ lim
ϵ→0

∫
(T1×T2)∧(ϕdµ)

π∗(θ(
v

ϵ
)). (4.9)

Now we rewrite the expression as follows. Recall V is the orthogonal m di-
mensional plane of ∆U in U × U . We project the current T1 × T2 the plane
V × (W × {0}) where {0} ∈ U is the origin of the Euclidean space U . Notice
the projection has maximal degree. Since T1, T2 are both Lebesgue currents,
the projection regarded as a distribution is a Lebesgue function, denoted by

L(v,w)

where v,w denote the points in V,W respectively. Then we can rewrite∫
IW

ϕdµ = lim
ϵ→0

∫
V×(W×{0})

L(ϵv,w)θ(v)ϕ(w)dµ. (4.10)

Hence the distribution IW satisfies the Lebesgue condition and its Lebesgue
function on W , denoted by

LW (w)
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is

lim
ϵ→0

∫
v∈V

L(ϵv,w)θ(v). (4.11)

We should note the limit (4.11) exists due to Theorem 4.1 (part (1)). Fur-
thermore the Radon-Nikodym condition is just the zigzag convergence of the
number

lim
ϵ→0

∫
V×(W×{0})

L(ϵv, Dλ(w))θ(v)ϕ(w)dµ (4.12)

as λ ↱ 0, where Dλ is the testing map defined in (2.3). Since L is an L1

function satisfying Radon-Nikodym condition, the convergence of (4.12) indeed
holds. We complete the proof.

Proposition 4.4. (intersection of the supports) Let T1, T2 ∈ C(X). Then

supp([T1 ∧ T2]) ⊂ supp(T1) ∩ supp(T2). (4.13)

Proof. Suppose
a /∈ supp(T1) ∩ supp(T2).

Then a must be outside of either supp(T1) or supp(T2). Let’s assume first it is
not in supp(T2). Since the support of a currents is closed, we choose a small
neighborhood Ua of a in X , but disjoint from supp(T2). Let ϕ be a C∞-form
of X with a compact support in Ua. Then by Definition 3.1. when ϵ is small
enough Rϵ(T2) is zero in Ua. Hence∫

[T1∧T2]

ϕ = 0, (4.14)

for a test form ϕ supported in Ua. Hence a /∈ supp([T1 ∧ T2]). If a ̸∈ supp(T1),
Ua can be chosen disjoint with supp(T1). Then since ϕ ∈ D(Ua) is a C

∞-form
of X with a compact support in Ua disjoint with supp(T1), the restriction of ϕ
to T1 is zero. Hence ∫

[T1∧T2]

ϕ = 0.

Then a /∈ supp([T1 ∧ T2]). Thus

a /∈ supp(T1) ∩ supp(T2)

will always imply
a /∈ supp([T1 ∧ T2]).

This completes the proof.
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Example 4.5. Let X = Rm be equipped with de Rham data consisting of single
open set with the convolution function f . Assume it has coordinates x1, · · · , xm.
Let

T1 = δ0dx1 ∧ · · · ∧ dxp, 0 < p < m

with the δ-function δ0 at the origin 0 of Rm. Let T2 be the p dimensional plane
{xp+1 = · · · = xm = 0}. Now we consider the integral∫

T1

RϵT2. (4.15)

By the formula (3.6), it is equal to∫
x∈T1

∫
y∈T2=Rp

1

ϵm
f(
x− y

ϵ
)dxp+1 ∧ · · · ∧ dxm ∧ dy1 ∧ · · · ∧ dyp.

By the continuity of the functional of the currents, we can interchange the order
of T1, T2. Thus we first evaluate T1 at the differential form

1

ϵm
f(
x− y

ϵ
)dxp+1 ∧ · · · ∧ dxm

to obtain that ∫
T1
RϵT2
∥

(−1)m(m−p) ∫
y∈Rp

1
ϵm f(

−y1
ϵ , · · · , −ypϵ , 0, · · · , 0)dy1 ∧ · · · ∧ dyp.

(4.16)

Since ∫
y∈Rp

1
ϵp f(

−y1
ϵ , · · · , −ypϵ , 0, · · · , 0)dy1 ∧ · · · ∧ dyp

= (−1)p
∫
y∈Rp f(y1, · · · , yp, 0, · · · , 0)dy1 ∧ · · · ∧ dyp

(4.17)

is a non-zero constant,
∫
T1
RϵT2 diverges to infinity as ϵ→ 0. Hence the inter-

section [· ∧ ·] does not exist for such T1, T2.

Example 4.6. (Deligne) Let X = R2 be equipped with the de Rham data that
has a single chart R2 with the convolution function f . Let A be the current of
the upper half plane, B the current of the lower half plane, and δ0 the current of
delta function at {0}. Let b =

∫
B
fdµ and a =

∫
A
fdµ where dµ is the Euclidean

measure for the plane. Notice a, b could be any real number dependent of de
Rham data. Then

[B ∧ δ0] = bδ0 (by the direct computation) (4.18)[
A ∧ [B ∧ δ0]

]
= abδ0 (follows from (4.18)) (4.19)

[A ∧B] = 0 (since it is supported on a lower dimension) (4.20)[
[A ∧B] ∧ δ0

]
= 0 (follows from (4.20)) (4.21)
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So [
A ∧ [B ∧ δ0]

]
̸=
[
[A ∧B] ∧ δ0

]
.

Hence the intersection [· ∧ ·] is not associative.

Remark It is also expected that the intersection is not commutative.

A Appendix: Kernel

In [3] de Rham created the notion of “regularizing operator” which includes de
Rham’s regulator Rϵ. Let X ,Y be two manifolds. Let L ∈ D ′(X × Y). There
is a homomorphism

D(X )× D(Y) → R
(ϕx, ϕy) →

∫
L
ϕx ∧ ϕy.

(A.1)

It leads to another homomorphism

Λ;D(X ) → D ′(Y) (A.2)

Then L is called the kernel of Λ. Conversely given a homomorphism Λ, there is
a kernel current L on X × Y. Notice

D(X ), E (Y)
∩ ∩

E ′(X ), D ′(Y)
(A.3)

where E (•) is the set of C∞ forms, and ′ is the topological dual.

Definition A.1. (1) If Λ can be extended to a continuous homomorphism

Λ : E ′(X ) → D ′(Y) (A.4)

we say Λ is regular.

(2) If furthermore, the regular Λ has the image inside of E (Y), i.e.

Λ : E ′(X ) → E (Y) (A.5)

we say Λ is regularizing.

Theorem A.2. (de Rham)
Λ is regularizing if and only if the kernel L is a C∞ form on X × Y. In

particular Rϵ is regularizing.
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