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Abstract

Let X be a C°° manifold equipped with a covering called de Rham
data. Let 2'(X) be the linear space of currents. Measure-theoretically, we
construct a subspace .Z(X) C 2'(X) and a bilinear map, called current’s
intersection,

LX)y xZX) — LX)
(Tl7 Tg) — [T1 A T2] ’
The intersection is dependent of de Rham data. However it has a rich
structure that form the real intersection theory. In the part I (this paper),
we prove the existence of such an intersection.
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1 INTRODUCTION 2

1 Introduction

1.1 History of the current’s intersection

Inspired by the original formulation of de Rham theory, we interpret a particular
type of weak limits of measures as an intersection in geometry.

It begins with de Rham’s work in differential geometry. Let X be a C*
manifold of dimension m. In [3], G. de Rham defined the intersection current

T Aw (1.1)

between a current 7' and a C*™ form w, expressed as a functional on Z(X) —
the space of C'*° differential forms with a compact support,

/Tw A (o) (1.2)

where the integral notation [.(e) denotes the functional. The intersection sat-
isfies
supp(T A w) C supp(T) N supp(w) (1.3)

where supp(-) stands for the support. The asymmetric expression (1.1) led
to the symmetric completion that historically emerged into the topology. For
instance, G. de Rham extended (1.1) to the intersection number between two
currents,

T A S, (1.4)

where S is another current of dimension m — dim(T). To do that, he first
constructed the de Rham’s regularization R.T that is a family of C'*° forms for
real € > 0, converging to T" as € — 0. Then he studied the convergence of the
real numbers,

/X RA(T)ARu(S), as (e,€) — (0,0). (1.5)

Such a formulation encountered two obstacles: 1) the sequence is dependent of
the non-canonical regularization, 2) the limit may diverge due to the singular
support. He overcame them by creating a homotopy to evade. The result is
topological, thus weaker than the geometric setup. But it led to the cap product
in homology, which later was replaced by the cup product in cohomology. As
the cohomological approach prevails, the de Rham’s regularization fades out.

1.2 New direction

We return to the de Rham’s regularization, but in the new tool of measure
theory. In our formulation, we consider the convergence of similar real numbers,

/ Ry N ¢, ase—0 (1.6)
T
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for a fixed test form ¢ € 2(X), where T}, T5 are currents satisfying
dim(T1) + dim(T3) > m.

The same obstacles still exist. But we do not use a homotopy to evade the
divergence. Instead we consider the reason of divergence. We found the diver-
gence lies in the measure of the singular support. So we go straight into the
singular support to obtain the convergence in Lebesgue measure. We call this
type of currents Lebesgue currents. If one regards geometric measure theory
as a method to measure the sets with tangential directions, real intersection
theory is a method to intersect such sets. The method has two steps: 1) con-
vert the currents to Lebesgue measure; 2) intersect the measure by taking the
limit. Thus the convergence is the weak convergence in Lebesgue measure. For
instance our intersection exists only in Lebesgue measure. But the application
lies in its connection with the classical cases which already include wedge prod-
uct of forms, transversal intersection of singular cycles, the proper intersection
of algebraic cycles and more. In this paper, we would like to prove a sufficient
condition for the convergence. Applying it we obtain a bilinear homomorphism
denoted by [- A 1],

Z(X)x LX) — C(X)

(TlaTQ) — [Tl /\TQ]’ (17)

for the subspace .Z(X)-the collection of Lebesgue currents. So (1.7) does not
only extend the formula (1.1), but also (1.3)

supp([T1 A T]) C supp(T1) N supp(Tz). (1.8)

The motivation (discussed elsewhere) is based on our belief that the singular
support contains the more advanced structure which is lost in the de Rham’s
homotopy.

We organized the rest as follows. In section 2, we introduce and explore a
particular type of currents called Lebesgue currents. In section 3, we review
de Rham’s regularization and give a further description of its kernel. In sec-
tion 4, we show that the conditions for Lebesgue currents are sufficient for the
convergence of de Rham’s regularization. This leads to the definition of the
intersection of currents — so called the intersection of currents.

2 Lebesgue currents

Definition 2.1. ( of notations)

(1) If T is current and ¢ is a test form, the functional for currents also
denoted by T(¢). The integral notion as in (1.2) will also be used with the focus
on the computation.
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(2) The functional of a distribution F is denoted by

[ (@i (2.1)
:

where dy is the Lebesque measure of the Fuclidean space. The notation
is extended to the functional of a signed measure that can evaluate
characteristic functions of measurable sets, or simply the measurable
sets.

(8) Let R™ be equipped with the coordinates x = {x1,- - , &y} referred to
as a chart. Let Vi be an r dimensional coordinates plane with multi
-index I of length r,

7 R™ =V

be the projection. Let Ve be the perpendicular coordinates plane of
dimension m — r satisfying {II°} = {1,2,--- ,m} with concordant
orientations. Let du’,du’” be their Buclidean volume forms

dxil /\“'/\dal‘i,,,,d.%‘i? AREE /\d.’l?izk

r

with the matching orders of the A products. Throughout this paper
Euclidean volume forms associated with the chart are used in two different
ways interchangeably: a) as a C differential form with concordant
wedge product, b) as the Lebesgue measure with respect to the chart. For
instance V7 is equipped with the Lebesgue measure du”.

(4) Let T be a current of dimension r with a compact support in R™. In [3]
(Chapter 111, §8, p36) T is written as

T=> Tidp" (2.2)
I

the form with distribution values. We call T; for each I the de Rham
distribution of T.

(5) Continuing from (3), let Tr, be one of de Rham distributions among
finitely many Tr. Then (wr)«(Tr, d,uIQ) s a current of maximal degree
in the plane Vi (where I, I may not be the same). Hence it is regarded
as a distribution in Vi (footnote 2 at p34, [3]), denoted by

(1)« (Tr,)

and called the projection of the de Rham distribution to Vi with respect
to the chart. The projection (with the x subscript) has an expression,

[ = [ mna (2.3)
(m1)+(T1y) T
for a test function f € P(Vq).
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2.1 Definition

Definition 2.2. ( Radon-Nikodym* ) In the following, vectors or points in
Fuclidean space R® will be denoted by bold letters. Let R"™ be the Fuclidean space
with the standard linear structure that has the basis e, --- ,e, and coordinates
x={xy1, - ,x.}. Let du, be the Euclidean volume form

dxy A -+ Ndz,,

A=)X\e; +---+ e €R" (2.4)

be a varied vector in the open region such that A\; > 0,all i. In the following we
describe a particular type of path limits (iterated) of a function of A as A — 0.
We divide the coordinates

)\15 Ty )\7‘

into groups as j1 group , jo group, ---, j; group such that
R" ~ Rt @Rj2 @---@le
where all indexes j's are non-zero. It will be referred to as the
group order. (2.5)
Then we consider such X that \; values in the same group are equal. We’ll use

the symbol 1}};% to denote the particularly (ordered) iterated limit for X — 0 (i.e.

all Xj,, — 0) in the order
lim --- lim .
A]‘l—>0 Aj1—>0

We name it as a zigzag limit. Let
u=uie, +- - +ue. €R”
be a point. Let Dy be an invertible affine map in the form,

R — R"

X — BoDy(x)+u (2:6)

referred to as the testing map, where B is an invertible linear map and Dy is
the diagonal linear map

R" — R"

e, — )\iei, all 4.

Denote the set of locally integrable functions by L},.. We say a bounded L €
L}, .(R") is of Radon-Nikodym if for any test function ¢ € P(R"), any testing
map Dy, any u and any group order, the zigzag limit

i [ (0209 o0, (2.7

Aro x€ER™

*Radon-Nikodym derivative is an important locally L! function in the theory of probability
(see [1]), whose average values around the non a.e. points lie in the heart of convergence of
(1.6).
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exists. We denote the limit (2.4) by
RNy 1, (2.8)
and call it the Radon-Nikodym number.

Remark Zigzag limit is a particular type of path limits along continuous
paths. However the function is not defined on the path.

Proposition 2.3. It does not depend on coordinates for the bounded
L e £}OC(RT)
to be of Radon-Nikodym.

Remark However the Radon-Nikodym number depends on coordinates.
The invariance is due to the matrix B.

Proof. The proof for u # 0 is identical with the homogeneous case where u = 0.
So let’s prove the homogeneous case. Let L € L} (R") be bounded and of
Radon-Nikodym in z-coordinates. Let y = {y1,-- ,y,} be another coordinates
of R", and
v:R" — R

(-751,"' 737r) - (ylf" ’yT)
be the diffeomorphism between the x-y coordinates. So we assume the homo-
geneous case,

(2.9)

v(0) = 0.

Denote the volume forms of R™ in y, x coordinates by dp,, dji, respectively. So

dpty = 9(x)dpig,

where g(x) is C*. Then the composition L o v~! denoted by L, is also locally
L'. Tt is sufficient to show the convergence of the numbers

A= [ DA (210)

as A I 0, where D) is the testing map with the linear transformation B and
o(y) € Z(R"). First we use standard calculation to convert the expression to
z-coordinates,

1

B m yER"
1 o

- det(B)H?_Mi/xeRr Ly(V(X))<V (6(Dx (Y))d:uy)> (2.12)
1

~ det(B) [Ty M

Ax Ly (y)$(Dx " (v))dpy (2.11)

/XeRT L(x) (V*(fb(DKl(y))duy)) (2.13)
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We make a change of variable
X = By o Dx(x)

(replacement of x with Bgo Dy (x)) where By = v !|o, a constant matrix under
the y-basis. So det(By)g(0) = 1. The integral in the last row (2.10) is

det(Bo)/ RTL(BooDA(x))QS(D;loyoBooD)\(X))g(BooDA(x))dux (2.14)

Because ¢ has a compact support, the variable x in the integral (2.11) is
bounded. Hence as |A| — 0,

Dy ovo Byo Dx(x)
uniformly (with respect to x) converges to x, and
BO o D)\ (X)

to 0. Thus
(b(D;l ovo ByoDx(x))g(Bo o Da(x))

uniformly converges to
$(x)9(0).
Considering the limits in

A —det(Bo) /

L(Bo o Da(x)) - ((b(D)\l o v o By o Dx(x))g(Bo o Dxa(x)) — ¢(X)9(0)) dptg
x€eR"

+det(Bo) | DBy Da(x)o(x)g(0)ds

since the function
L(By o Dx(x))

is bounded, we conclude that

1>}|£15A>\ = l}\llg{)l o L(By o Dx(x))p(x)dpt.

Notice By o Dy is still a testing map. Hence

fim | L0y o DA dis

converges. This completes the proof.
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Definition 2.4. (Lebesgue current).
Let X be a differentiable manifold of dimension m. Let U, a neighborhood,

1, ,Tm coordinates for U be a chart in the differential structure of X. Let
du’ be the Euclidean volume form
dLL'Z‘l A A dLUZ‘T (215)

of an r-dimensional coordinates plane Vi with multi-index I = (i1 - - - 4,.),
U —=Vi~R"

the projection given by the chart. Then a homogeneous current T’ of dimension p
is called Lebesgue if for each chart (U,xq, - ,zy) in an atlas and each set S of
C™ forms £ € 2(U) bounded to order 0, the following conditions are satisfied.

(a) Lebesgue condition

Let 1,17 be any two multi-indexes with the same length. The projection
(71)«(T1,) of each de Rham distribution Ty, of T A& to each coordinates plane Vi
18 a signed measure absolutely continuous with respect to the Lebesgue measure

(defined by the chart). Furthermore the Radon-Nikodym derivative %

) (see
section 32, [1]) is a bounded L' function with the same compact support and for
all € in set S of forms bounded to order O (see chapter III, §9 in [3]). This is
equivalent to the existence of a Lebesgue integrable function Ly on Vi, that is
bounded, supported in the same compact set and satisfies

/ ddu’ = | Lrpdu’ (2.16)
(7). (T1,) Vi

for any test function ¢ € 2(Vy). The L' function L = % will be called
the Lebesgue function of T or T ANE. The formula (2.16) can be combined with
(2.14) to have a more direct expression in terms of the original current T,

@16)= [ (m) (@)au” (2.17)
TAE
where the index Iy is the indexr associated to the de Rham distribution Tr,, i.e.
TAE=Tpdu't + -
(note: index I is different from I, but has the same length).

(b) Radon-Nikodym condition.
All Lebesgue functions Ly of T are of Radon-Nikodym.

Remark Lebesgue functions of T" are dependent of £ and coordinates chart
which are not reflected in the notation L£;. It is a particular type of density
functions in probability theory.! In integral theory it can be described as follows.

TA Radon-Nikodym derivative evaluated at an a.e. point is the infinitesimal ratio of two
measures, called the density.
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Proposition 2.5. Assume all notations from Definition 2.4. Then Radon-
Nikodym condition holds if and only if

1

&%m /veVI £[(V)¢(D;1(V))dul (2'18)

ezists for each test function ¢ and index I. Furthermore if the Lebesgue function
L7 is continuous at u,

RNy, = L1(u) / P(v)du. (2.19)

veVr

Proof. Recall the integral (2.7) in Radon-Nikodym condition. We consider the
integral

/ L1 (DA(v))o(v)dpu®.
veVvr

After the change of variables
Dy(v) = v. (2.20)

( replacement of Dy (v) with v ) the formula (2.7) turns to the formula (2.18).
If £; is continuous, since v is bounded, we have

i [ £iDAW)ovin = / IR TGN TR CED

Therefore the limit exists and is equal to

/ £1(w)d(v))dp’ = L1(u) / o(v)dp'
veVr

veVr

Thus the Radon-Nikodym condition is satisfied.
O

Definition 2.4 is stated in one atlas. Let’s show it is independent of the atlas.

Proposition 2.6. Definition 2.4 defines an invariant of the C'*° differential
structure.

Proof. We need to prove that the conditions (a), (b) of Definition 2.4 are inde-
pendent of charts. Let T be a current of dimension p, and £ € 2(U) a form in
a neighborhood U. Let U,x = {x1,- - , 2} be a chart called x-chart satisfying
the conditions of Definition 2.4 for T A €. Let U,y = {y1, -+ ,ym} be another
chart called y-chart. Let v be the transition map from z-chart to y-chart. Let
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Vi be an r dimensional z coordinates plane, V; be an r dimensional y coor-
dinates plane, dul, dui be the volume forms of the coordinates planes Vi,V
respectively. Let

dp)’ Z grx (x)dpk” (2.22)

where gyi is the entry of the Jacobian matrix Jy_,, from y-chart to z-chart,
and K is a multi-index of length r. Let w; : U — V; be the projection through
y-chart, and 7y : U — V; the projection through the z-chart. We may assume
the projection map (in y-chart)

vig: Vi — Vy

is a diffeomorphism that preserves the orientation. Now we fix J index of length
r. On U, we have the sum

TAE= ZFK )dpk” (2.23)

where F (y) is a de Rham distribution on U, and K is the multi-index of length
r. Then supp(Fk(y)) is bounded, since T' A £ has a compact support. Then for
two fixed indexes J, K of length r,

FK(Y)dMZ{O

is a current on U of dimension r. Through z-chart it has the following decom-
position

d,uy ZD]

where
Dy = Fe(v(x))gr(x)dul. (2.24)

is a current of dimension r on U, and I° is a multi-index of length m — r. Note:
Fr(v(x)) is the distribution

(v ) (Fr(y))-

This notation for push-forwards of distributions will be used alternately with
the conventional notations throughout, but this is referred to as the change of
variables.

There is a commutative diagram

/ \ (2.25)

Vi — V.
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Then we have

(m1)«(Fr(y))

(converted to a form)

= (7)«(Dy)
T
(diagram (2. 25))

= Z (Vig)« )«(Dr)

(Note: *, * are two different operators.). Therefore for distributions in y-chart

we have
(mr)«(Fr(y)) = E (vr1)« o (m1)«(Dr). (2.27)
T

(2.26)

Let’s calculate Dy. Let
TAE= Z Gp(x)dut”

(Note: G p(x) is some distribution)

=3 Gr ) gk () A,
K P

where g;%( stands for the entry of the Jacobian matrix, J,_,,. Now we apply
above calculation for

Y) =Y Gp( ' (¥)gpk(y),

and

= 3 GrIgi G (2.28)

Since T is Lebesgue in z-chart, it satisfies both conditions of Definition 2.4
in z-chart, therefore (7). (Dy) is a distribution in a-chart. So it is is a bounded,
compactly supported L' function of Radon-Nikodym on V; in z-chart. Due to

Proposition 2.2, so is
(v1s)« © (71)+(Dr)

on Vj in y-chart. Hence its sum over finitely many I,

> wry)s o (x1)«(Dr)

1

is also a bounded, compactly supported L' function of Radon-Nikodym on V;
(which is in y-chart). By the formula (2.27) we complete the proof.
O
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Definition 2.7. Let X be a C°° manifold. Denote the collection of Lebesque
currents by

L(X).

2.2 Examples

Tt is clear that £ (X) is a subspace. In this subsection we’ll provide three major
examples: 1) C*° singular chains; 2) C*° forms; 3) Cartesian product.

Theorem 2.8. Let ¢ be a reqular cell. Then c is Lebesgue. Furthermore C*
chains are Lebesgue.

The theorem is one of major theorems whose proof follows from the follow-
ing two lemmas: 1) the proof of Lebesgue condition; 2) the proof of Randon-
Nikodym condition.

e Lebesgue condition
Lemma 2.9. A regular cell ¢ satisfies Lebesque condition.

Proof. Tt suffices to work in one chart. So we assume X = U = R™ is
equipped with the standard chart (a basis for the linear space) with coordinates
(z1, -+ ,Zm). We may assume the cell ¢ is represented by a diffeomorphism
extended to K,
h:K — h(K)cCU
u U (2.29)
A — h(A)

where A is a polyhedron in an Euclidean space, and K is a neighborhood of A.
Let £ be a test form in Z(U) such that

dim(A) — deg(§) = .

Let Vi ~ R” be an r-dimensional coordinates plane. We denote projection
U — Vi by 7r;. Let dpu’ be the Euclidean volume form of another r-dimensional
coordinates plane. Then by the formula (2.17) the projection of a de Rham
distribution of ¢ A £ to V7 is the functional,

Fio = [ ox)dy’ (2.30)

where ¢(x) = 75 (¢(v)) for a test function ¢(v) € 2°(V;) ( Note: the index J
is associated with the de Rham distribution). Notice that

|fc/\g ¢(X)d#']|
= | fcf A ¢(X)du‘]| (2.31)
= | [ar P*(E N B(x)dp?)
< Cl[8l]o,x
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where C'is a constant and ||@||o,x is semi-norm with the compact support K =
supp(¢(v)). Since the inequality (2.31) holds for all compact set K supporting
the ¢, by Proposition 2.1.8, 1.3.11, [2], F is a measure. So if we let ¢ be a
characteristic function x(E) of a subset set E C V; of Lebesgue measure 0, the
inequality (2.31) becomes

‘ f]: X(E)d:w]l < th—l(E) dp’ = 0. (2.32)

Hence F is absolutely continuous with respect to the Lebesgue measure dpu’
of V;. Next we estimate the Lebesgue function which is the Radon-Nikodym

derivative a.e. ;
h* (€N x(Be)d
i Har (€A X(Be)dp)|
€=0 dpr |X(Be)

(2.33)

where B, is a bounded domain in V; of radius €, and dﬂl‘x(Be) is its Lebesgue
measure. Notice that

[ n ey < Cliellos [ dur.
AP B,
Therefore I ( (B
h* (& A x(Be)du
= < Cllgllo,x- (2.34)
[, A

Hence the Radon-Nikodym derivative % is bounded when £ is locally bounded.
This shows c¢ satisfies the Lebesgue condition. O

¢ Radon-Nikodym condition
First we state a technical definition. Let R*¥* be a subspace of R” with a
direct sum decomposition
R" = R @ R*2. (2.35)

Let W C R” be a bounded measurable set, and a a point on the boundary of W.
We call an intersection W N (B x R¥2) for a ball B C R** an k;-neighborhood.

Definition 2.10. We say the domain W C R" is a growing set along R*' at the
center a if there is a ky-neighborhood U, containing a such that for any point
(b1, by) € U, there is real number € > 0, and an e-line segment lying in W as
follows

L.={a+t(b1,0): 0<t<e}CW. (2.36)

Lemma 2.11. We continue the notation in Lemma 2.9. A regular cell satisfies
the Radon-Nikodym condition.
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Proof. Let’s now prove the Radon-Nikodym condition. We may assume u = 0
and B = identity. Let ¢(v) be the test function on V; with v € V;. Recall
the projection 7y : U — Vi, Dy the testing map which is a block-wise scalar
multiplication (see the formula (2.3)). Since being Lebesgue current is inde-
pendent choice of coordinates, we may choose a coordinates system so that the
composition

P:K—-U—=V;

is a diffieomorphism and K ~ U ~ R". Then by using Proposition 2.5, the
Radon-Nikodym number is the limit

. (D)
v [ (Gt ) 0

where J is an arbitrary multi-index of length 7, and Dy (e) is the affine transfor-
mation as in (2.3) ( the integrand is the C*° form on R"). Because the integrand
can absorb the C'*° form &, so for the simplicity we may assume £ has degree
0 and has value 1 on ¢, and I = J (note £ is bounded by 1). Then after the
change of variables

DyY(v) = v,

the integral in (2.37) is the evaluation of distributions on the plane V; ~ R",

/ o(v)dp”, (2.38)
D3N (P(A))

where Dy '(P(A)) is a cell for each A, and du” the Lebesgue measure.

Next we use measure theory to show

Claim 2.12. The sequence of distributions
DYY(P(A))
converges weakly as a zigzag limit |A| T 0.

Proof. of claim 2.12: First we consider the general situation for a bounded
measurable set W as in the definition 2.10. Then

W = U, UUE (2.39)

where Uy C W is a ball centered at the point a, and U§ = W\U,. Let § > 0 be
the radius of U,. Let A, for A > 0 be the linear transformation

R — R (2.40)

A, 0
(o) nan

represented by
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in the decomposition
R” = R" @ R*2

where I, are the identity matrix of size k; x k;. Let N € N be a natural

number. Since § > 0, lim — = 0. Hence A1 (Uf§) as a distribution converges
N—oo N N

to 0 weakly as N — oco. For the other set, since U, is a growing set, we have a
sequence of measurable sets

Ay (Ua) C A¥(Ua) C--CAL(Ua)C--- (2.42)

Let Wi, = UnA1 (Ua). Then Wy, is a measurable set and A (Ua) weakly
converges to the measurable set Wy, . Therefore A1 (W) as N — oo converges

to a measurable set Wy, . Hence Ax(W) as A — 0 converges to a measurable
set Wy, .

Then we repeat it for each division as follows. According to the group order
of the zigzag limit, there is a decomposition

R =R'®. .- @R (2.43)

Since P(A) is a O r-cell in R", its projection to each coordinate’s plane is
a growing set. So we can repeat above arguments for each block in the group
order

jlaj??"' ajl'

Then we obtain each limit denoted by each of

(). ((p(A))jl)jQ,... , (((P(A))ﬁ)h )

is a growing set in R". Finally D;l(P(A)) converges weakly to the finite

Lebesgue measurable set
(((P(A))jl) : )
.7'2 jl

as |[A| 7 0. We complete the proof of Claim 2.12. O

Ju

By the linearity, the existence is extended to all chains and cycles O

Theorem 2.8 follows from Lemmas 2.9, 2.11.

Proposition 2.13. Let w be a C* form. Then w is Lebesgue.
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Proof. We may prove it locally. So let X = R™. Let m — p = deg(w). Let £ be
any test form on R™ of degree p — r. Let

L1y 3Ty Trgdy 3 Tpy Tpgly, " 5 Tm

be a coordinates chart. Let V; have coordinates plane of components z1,-- - , z,.
For the simplicity, we may assume

w=M(X)dzp41 A Adzy, (2.44)
€= N(x)dx, 41 A+ Adxy (2.45)

We obtain that the Lebesgue function of w A £ is the fibre integral

/ M(X)N(X)dajp"_l N Ny, A dx'r'-‘rl VANRERAY dxp (246)
(mr+1 PR 7mm)€R7774—',‘

which is a C*° function of z1,---,z, in the V; plane. Since the Lebesgue
function is C*°, the Radon-Nikodym condition is satisfied O

Next we work with Cartesian product.

Lemma 2.14. We resume the set-up of Definition 2.4. In particular U is a
chart of the manifold X. Let L; be a bounded L' function in L}, .(U), where
L},.(-) denotes the set of locally integrable functions. If

¢ € 2(U x RF), (2.47)
1) then Radon-Nikodym number RNy o, (y), which is a function of
&Ly

y € RF lies in 2(RF).
(2) The convergence

lim vev, L1(DA(V)$(v,y)dp' (2.48)

is uniform for the bounded variable y € RF.

Proof. (1) Let e;,i =1,--- ,n be a basis for R¥. Let h be a real number,
y= Zyiei €R".
i=1

Let’s consider the number
_ RN¢,LI (y + hei) — RNd),L:I (y)

Ay, = ~ RNosen ., (¥)
— lim E](D)\(X))<¢(D)\(X)7y+Ayei) _¢(D)\(X)’Y) _ a¢(DA(X)7y)
[x|ro xeVr h ayz
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Since ¢ is C*° with a compact support,

¢(Da(x),y + he;) — ¢(Da(x),y)  96(Da(x),y)

h 0y;

as h — 0 uniformly (with respect to A, x) converges to 0. Together with the
bounded L£;(Dx(x)), we have

lim Ah =0.
Ay—0

Hence RNy -, (y) is differentiable and

ORNy £, (y)

S = BN oy, (7) (2.49)

By the iteration, RNy ¢, (y) is C*°. Since ¢(x,y) is both bounded and com-
pactly supported, so is RNy ¢, (y).

(2) Let’s continue from part (1). By Theorem 6, Chapter II, §7, [3], there is
a sequence of test functions

Ui (v) € 2(Vi), 93 (y) € 2(RY) (2.50)

such that
P (V)R (y) = d(v,y) as n — oo

uniformly on the compact set. Thus for any € > 0, since L; is bounded there is
an N such that

| EI(DA(V))<¢¥(V)¢§V(Y)¢(V7Y)>dﬂl|§6 (2.51)

veVr

for all X. Taking the limit |A| P 0, we have inequality

(03 (¥) RNy £, — RNz, ()| < € (2.52)

(which does not involve A). Next we write the number 13’ (Y)RNyy , as a
zigzag limit |A| " 0:

U3 (¥) Joev, L1DAMV)YY (V)dp'  — 93 (y)RNyy ¢, (2.53)

whose convergence is independent of y. Hence the convergence
/ L1(Dx(v)$(v,y)du" — RNy, (2.54)
veVr

as |[A| 7 0 is independent of y.
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Theorem 2.15. Let Y be another C°° manifold. If currents Ty, Ty are Lebesque
in X, Y respectively, so is Ty X Ty in X x Y, where Ty x Ty is the wedge product
deduced from the tensor product of two currents.

Proof of Theorem 2.15. There are 3 steps.

(1) SETUP. By Proposition 2.6, it suffices to work with one chart. So we
assume X = R™ whose points are denoted by x and objects are labeled by .
We also assume ) = R™ whose points are denoted by y and objects are labeled
by y. For the clarity, we’ll use the indexes in the following convention.

(I) Single indexes denote objects from each individual manifold X or ).
Indexes p, k with p > k denote the objects in X', ¢,l with ¢ > 1 in ).

(IT) Double indexes denote the objects from the product X x ).

(III) Vs, Ve.e are subspaces, and djie, dite e are the Lebesgue measures for
subspaces inherited from the fixed Lebesgue measures on X, ).

Recall Th, T» are currents. Let’s assume dim(T1) = p, dim(T2) = q. We may
assume the form £ is in the format

£ =C(x,y)dpp—k,q-1 (2.55)

with the function ¢ € (X x Y) where dp,_k q—; is the Lebesgue measure for
some subspaces Vj,_j x Vo_; C X x V. Let £, € 2(X),&, € Z(Y) be functions
such that they are equal to 1 on the projections of supp(¢) to X,Y. We denote
&1 by T, and &§,T5 by T,. They all have compact supports. Then

(Ty xTo) NE = (Txdﬂpfk X Tydﬂqfl)g(xa y) (2.56)
where
Tzdﬂp—k(resp- Tyd,uq—l)

is the abbreviation for
Ty A dpip—i(resp. Ty A dug—p).

Let
ﬂk,l:é\,’x)} — VkXVl (257)

be the projection. Let dpis, diy be the Euclidean volume forms of other coordi-
nates planes of dimensions k, [ in X', ) respectively. By “other”, it means the
the subspaces may not be the same as Vj,V;. Then by the formula (2.17), the
projection of a de Rham distribution of current (Th x T5) A€ to Vi = Vi X V;
is defined to be the functional

rre = / T 1 ((Xks Y1) )dpte A dpsy,
(Tedpp -1 X Tydpig—1) A (x,y) (2.58)

= nyd/’qul f(deﬂpfk)/\C(xvY) ﬂ.Z’l <¢(Xk7 yl))dﬂw> duy
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where ¢(xx,y:) is a test function on the coordinates plane Vj, ;, iteration is well-
defined for the compactly supported currents on C*>° forms. In the following
we’ll address the properties of the distribution F.

(2) LEBESGUE CONDITION.
By Theorem 6, Chapter II, §7, [3], there are sequences of test functions

¢ (%),¢, (¥), N €N (2.59)
on X, respectively such that they are bounded for all variables N, x,y and

G (%)) (y) = C(x,y) uniformly, as N — oo

Then for any natural number N, we rewrite

Jr Odta N ity = I, (f(mupk>A(<(x,y>—<§<x)<5 () T 00k YZ))dM) ity

L1y dginc ) (szd#p_kAcff (o) T (D (Xk, y1))dpta |ty

(2.60)
Now we let £ (x1), L] (y1) be the Lebesgue functions of de Rham distributions
of the currents

Trdpp—k N Cg]cv(x)a Tydpg—1 N Cgﬁv()’)

on Vi, V; respectively. The Lebesgue condition implies they are bounded for all
N, i.e. there is constant M such that

L8 (ki) < M

LN (y)| < M (2.61)

for all N and bounded xj,y; a.e. By part (1) of Lemma 2.14, the second term
of (2.60) above continues to be

/ (/ O (xk, YZ)d,Uac> dpy
Tydl"qfl/\CéV(Y) Todpp— kA (x)

= . Ly (xx) L0 (y)mh 1 (6 (X, y1) ) dpw A dpu
k,l

On the other hand, for the first term of (2.60), there is a sequence of numbers
any — +00 as N — +oo such that the set of forms

an((C(x,y) = X (x) A G (¥))

for all N € N is locally bounded. Hence the Lebesgue functions of two currents

aN(deMp—k) A (C(Xv Y) - CJIUV(X) A CéV(Y))’ Tyd,uq_l

on Vi, V, are bounded for all N (the Lebesgue function on Vj is dependent of
¥, but it also bounded for all y.). So the sequence of numbers

aN/ (/ Wlt,l(ﬂs(xlm yl))dum> dpiy
Tydltqfl (Tzdﬂp*k)/\ (C(xﬁ')_(é\’ (x)/\(év (y))
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for all N is bounded. Thus the sequence of real numbers

Th 1 (P (X, }’z))dum) dp,

/Tyd/iql </(Tzdﬂpk)/\(C(xQ')_Cév(x)/\Cév(Y))

converges to 0 as N — oo. Therefore

o i, = i R ek )£ ()70 ock 1)) sk A .

0 J (xk,¥1) € Vet

(the Lebesgue integral exists due to the part (1) of Lemma 2.14). Then we
apply the Lebesgue integral to estimate

< Olléllo.x (2.62)

‘ [ duz ndn,
F

for some constant C. By Proposition 2.1.8, 1.3.11, [2], F is a distribution of
order 0, thus a measure. If x is a characteristic function of a set with 0 Lebesgue
measure, the inequality (2.62) implies

/ Xdpg N dpy = 0.
f

Thus F is a measure absolutely continuous with respect to the Lebesgue mea-
sure. The Lebesgue integral also shows that the Radon-Nikodym derivative has
inequality

< C'M? (2.63)

‘ dF
dpig,

for some constant C’, where duy,; is the Lebesgue measure for Vj; and the
bound M is from (2.61). We complete the proof of the Lebesgue condition.

(3) RADON — NIKODYM CONDITON. Next we prove the Radon-Nikodym

condition. Let
dF

dptg,1

be the Lebesgue function, where dyuy; is the Lebesgue measure of the plane
Vi1 Let Dy,, Dy, are testing maps for Euclidean spaces Vi, V; as in (2.3). Let
D(x, »,) be the testing map for V} ;. Denote its identity extension to R™ x R"
by the same notation Dy, x,). Let

Li1(Xk,y1) =

X, ) = /( LD ) (D, ()00 )
Xk, Y1)€EVE 1

(2.64)
Then it is sufficient to prove the zigzag convergence of
: N
hm C()\lv)\Q) (265)

N—o0
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as (A1, A2) I 0, i.e. the convergence of the iterated limit

. . N
(Al{lg\lzl)ﬁol\}gnooc(kl’)ﬂ). (2.66)

So we consider the other order

li lim O 5.
Ngnoo(xl,l,{rzl)m (A1,A2)

Let

— 1 N

RN = ()\}}{IQ])I_)OC()Q)Q). (267)
Using Lemma 2.14 for the iterated evaluation, we see Ry exists and is bounded
for all V.

Claim 2.16. The sequence
Ry, — Rn,, N; e N.
converges to 0 as (N1, N2) — (00, 00).
Proof of Claim 2.16. Let a(n, n,) be a sequence of real numbers such that

I -
(N1, Na) s (o0 ,00) (Vs N2) = €

and
a(N17N2) (Cs{ch (X) A Cgi\h (y) - a]cvz (X) A Cé\b (y))
is bounded for all N1, No. Then

a(ny,Ny) (BN, — Ri,)

= lim

_ Mt As)
<*1’*2>V0/<Txdﬂpkx:ryduqL>Aa<N1.N2>(<£“A<x) M- eond2 )

where 7(x, x,) is the € form
Dix, o) (T (D(xk, o) )dpu A dpar).
Let J(n,,n,) be a Lebesgue function of the current
(deup_k x Tyduq_l) (W,NQ) (€ () A € () — 22 (%) A <y>))

on Vi ;. Since

Ny Nz (G (%) A G (Y) = G2 (%) A G ()
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are C* forms bounded locally, by step 2 above J(n, n,) is a bounded L' form.
Thus

| Ty No) (D g o) (ks Y1) T 1 (0(Xk, y1) ) dpur A dya|
(%Xk,¥1) €V,

= a ) N A2)|

lim |/
Ny, N.
0 (g Tyt A (6 OAGY (9) -2 G0N ()

<M"
for a positive number M”. Therefore

a(ny,Ny) (BN, — Ri,)

is bounded. Notice

lim a = 0.
(N1,N3)—(00,00) (N1,Nz)

Thus

li Ry, — R =0.
(Nl,Ng)lgl(oo,oo)( N N2)

So Ry converges to a real number L. This shows the limit

lim lim Cf, ,, =L
Ngnoo()\l,l)gl)r’o (Ar,22)

exists.

Now by the same proof the convergence above, the convergence of another
limit
. N
hm C(}\h)\z) (268)

N—o00

is uniformly independent of A;,As. Hence the iterated limit in the opposite
order,
li lim Oy
(A1 Aa)PONso0~ A1:A2)

exists and is equal to the limit,

. . N _
ngnoo()\ll’l)\rgl)pOC(Ah)‘Z) = L. (269)

We complete the proof.
O
Proposition 2.17. IfT is Lebesgue and w is C*°, then the intersection
TAw (2.70)

1s Lebesgue.
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Proof. This is the tautology. Let £ € P(U). Notice w A& € Z(U). Then the
projection J of de Rham distributions of

(TAw)NE

is the same as that of
TA(wAE).

We complete the proof. O

Example 2.18. There exist currents that are not Lebesgue.
In the Euclidean space R™ of coordinates x1, -+ ,Tp, -+ ,Tm, we let

T =0odxpi1 A+ Ndzy,

with d-function dg of the origin O of R™. Let V be the coordinates plane with
coordinates x1,-- - ,xp, and m: R™ — V be the projection. Let & € Z(R™) with
£(0) # 0. So a projection of the de Rham distribution m,(£0o) is equal to

60£(0). (2.71)

Hence m,(€00) is the distribution 60£(0), also a measure on V with the Borel
o-algebra of V.. Now we consider the two measures for V on the same o-algebra.
When they are applied to the singleton set, the origin of V, the Lebesgue measure
is 0, but the projection measure is £(0) # 0. Hence

m«(£d0) & Lebesgue measure.

So T does not satisfy the Lebesgue condition.

3 De Rham’s Regularization

G. de Rham introduced the notion of currents that connects the singular chains
and C'*° forms. The connection is through the de Rham’s regularization which
consists of two operators: R., A. ( see chapter III, [3]). They are the origi-
nal parts of de Rham theory which serves as the foundation to the differential
geometry. However since we need to go beyond them, let’s have a review.
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3.1 Construction

Definition 3.1. Let X be a connected, oriented manifold. Let € be a small
positive number. Linear operators R. and A on 2'(X) are called de Rham’s
requlator and homotopy operator respectively if they satisfy

(1) a homotopy formula

R.T —T = bA.T + AbT. (3.1)

where b is the boundary operator.
(2) supp(R.T), supp(AT) are contained in any given neighborhood of
supp(T) provided € is sufficiently small.
(3) RT is C*;
(4) If T is C™, AT is C".
(5) If a smooth differential form ¢ varies in a bounded set and € is bounded
above, then R.p, Acp are bounded.
(6)
IimR.T =T
e—0

in the weak topology of P'(X).*

Theorem 3.2. (G. de Rham) The operators Re, A exist.

Proof. In the following we review the constructions of operators R, and A.. The
verification of conditions (1)-(6) in [3] will be omitted. There are three steps in
the construction.

Step 1: Local construction, i.e. the construction in X = R™.

Step 2: Preparation. To prepare for the gluing, we “shrink” the operators

to a bounded domain B in R™ with boundary.

Step 3: Gluing. Assume X is covered by the bounded domain with
boundary B?, countable i. Then glue the operators in each B’ to
obtain the global

R., A, (3.2)

Step 1: The most part of this step is originated from Schwartz’s work in
[4]. But we’ll explore it a little further. Let X = R™ be the Euclidean space
of dimension m with the standard linear structure. Let x = (x1,--- ,x,,) be
its Euclidean coordinates, and vectors and points in R™ will be denoted by

fDe Rham’s convergence in [3] is a little stronger than the weak convergence. But no
matter how strong the convergence is, the non-triviality lies ahead.
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the bold letters. Let T be a homogeneous current of degree p on R™. Let
f(x) € 2(X) satistying

f(x)dp, =1, (3.3)
x€ER™
where dpu, is the Euclidean volume form

dxy N Ndz,,.

We assume f is symmetric,? i.e. f(x) = f(—x) Let

P (x) = f(x)dps. (3.4)
Denote <
De(x) = 191(;)~ (3.5)

be the m-form on R™.

Next we define two operators on the differential forms of Euclidean space
R™ based on C* maps sy(x) below. Let

sy (%)
be C'*° maps parametrized by y € R™,

R™ — R™
X = sy(x)

such that all partial derivatives of the components with respect to the variables
of x are continuous functions in (x,y). Let ¢ be a test form on R™. For such
maps sy (x), we denote two operations on the form ¢

sy (9), and

Sy (#) = Proji(sy ().t € [0, 1]
where Proj : [0,1] x X — X is the projection, Proj, is its fibre integral, and

S(t,y) : [0, ].] xX — X
(t,x) = Siy(x).

Then we define operators R, A on currents T' by

fReT ¢ = foT fyGRm De(y) A 3;¢(X)) )

(3.6)
Ja 6= Feer( fyegm 93) A s;¢<x>)

§Symmetry was mentioned but not required in de Rham’s work. But it is required in our
work for the communitativity.
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where ¢ is a test form. We should note that
(1) the continuity assumption about sy(x) guarantees the existence of
(3.6),
(2) also equations

deg(sy(0)) = deg(¢),
{deg(S;(¢)) =deg(¢) — 1 (3.7)
imply that
dim(R.(T)) = dim(T),
{dim(Ae(T)) = dim(T) — 1 (3.8)

If furthermore the map

R™ xR™ — R™xR™
(xy) = (%sy(x)

is a diffeomorphism, there is a change of variables

{sy(x) =X (3.9)

y = s H(x,y)

(replacement of sy (x) with x; y with s7!(x,y)) where s71 : R™ x R™ — R™ is
C* and satisfies s,-1(xy)(x) =y. Then the first integral of (3.6) shows that

R.T = /GT Ie(s7H(x,y)) (3.10)

is a C°° form. The form J.(s71(x,y)) as a form in variables x,y is the kernel
(p71, [3]) of Re. We should make a note that the currents’ evaluation (3.10) is
defined through double currents in the same way as the fibre integrals of C'*
forms under the projection X x X — X.

In the step 1 we use
sy(x) =x+y
for the particular case of R, where the + is from the standard linear structure

of R™. Then R, is the convolution. Next we sketch the rest of two steps in the
globalization, where the general sy (x) will be used.

Step 2: Choose the unit ball B C R™ diffeomorphic to R™. Let h be the
specific diffeomorphism
R™ — B,
defined on p66, [3]. Denote the sy(x) in step 1 by s (x). Then we define the
new C°° map

sy(x){ hsih™'(x) for xeB (3.11)

X for x¢ B.
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We would like to point out that sy (x) satisfies assumption. Then we can define
the operators R, AP depending on B in the same way (with a test form ¢):

fRfT ¢ = fxET fyeRm 19E(Y) A S;¢(X)),
fA?T ¢= fxeT fyeRm De(y) NSy (X)>

Then the operators RZ, AP will satisfy

(a) properties (1), (4), (5) and (6) in definition 3.1.

(b) RB(T) is C* in B, RE(T) =T in the complement of B;

(c) if T is C" in a neighborhood of a boundary point of B, AZ(T) will have
the same regularity in the neighborhood.

(3.12)

Step 3: Cover the X with countable open sets B; (locally finite). Now we
regard each B as a subset of B in step 2. Let a neighborhood U; of B;. Let h;
be the diffeomorphic-to-image map

u, — R™
U U

Let g; > 0 be a function on &', which is 1 on B; and supported in U;. Let
T =g T and T =T —T’. Then we let
RT = (hi ') 0o RE o (hy).T" +T"

AT = (hi ') 0 AB o (h;).T'.
( Note: h;l is well-defined because h; is a diffeomorphic-to-image map). Finally
we glue them together by taking the composition,

REN):RiooRéV,

AEN)ZRlo---ORNoAN. (3.13)

Then we take the limit as N — oo with respect to the compact support to
obtain the well-defined, global operator R, and A..Y

O

Definition 3.3. ( de Rahm data)
(a) We call R, from Theorem 3.2 the de Rham’s regulator, A, from
Theorem 3.2 the de Rham’s homotopy operator, and the
associated regularization the de Rham’s regularization. All operators
R., Ac are chosen to be de Rham’s. (The general
operators from definition 3.1 are not necessarily de Rham’s).

11n (3], for each open set U; there is a different positive ¢;. We used the same number €
for all U;. This difference should be noticed.
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(b) We define de Rham data to be all items in the construction of
de Rham’s regularization operators R., Ac. More specifically it
includes
(1) the covering B; C U; with the order of countable i,
(2) the diffeomorphism h; : U; — R™, and functions g; with value
1 on B;,
(3) for each B;, another diffeomorphism h' : B ~ R™ with Euclidean
coordinates,
(4) functions f; in each B* ~R™ as in the first step, called
convolution functions, g;, h; called the gluing data.
(¢) The covering B; C U; equipped with all the items (1)-(4) in de Rham
data is called the de Rham covering. Each pair B; C U; with (1)-(4)
is called a de Rham chart.

Remark The de Rham data gives a covering that regularizes the piece of
T supported in B; in each chart U; independently and operates as an identity
outside of B;. There is “glue” (such as g;) at each chart to glue pieces together
by taking the composition. But there is no relation among pieces.

G. de Rham further showed in chapter III, §17, [3],

Corollary 3.4. The de Rham’s operator R. constructed in Theorem 3.2 is a
reqularizing operator, i.e. there is a C*° form g.(x,y) on X x X, called the C*°
kernel of Re, such that as currents,

ReT = / Qe (Xv y)
yeT

where the current’s evaluation on the right is defined as in Theorem 9, [3]
through a double form.

Remark Note: there is a sign factor when the form p.(x,y) is switched
to the double form for evaluation. Kernel of an operator is a crucial technical
notion defined by de Rham in [3]. We list its definition in the Appendix.

3.2 Kernel of de Rham’s regulator

Definition 3.5. Let w be a C*° form of degree p on a manifold X. We say w
is a local constant slicing, if at each point, there is an open set U containing the
point such that

wly =7"(0) (3.14)

where m: U — V ~RP 45 a C*™ map, and 0 is a C* form on V.
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Remark A form of a local constant slicing is a particular type of forms
invariant under the C'°° diffeomorphisms. For instance we notice that the dif-
ferential operation commutes with the pullback 7*. Hence

dwly = 7*(df) = 0

due to the maximal degree of . Therefore a form of a local constant slicing
must be closed. Hence it represents a cohomology class.

Lemma 3.6. Let Xy be the union of countably many proper submanifolds of
dimension strictly less than dim(X). Let w be a C* form on X such that for
each point ¢ € X there is a chart U containing q and the equality (3.14) holds
on the submanifold U — (XyNU). Then w is still a local constant slicing on X.

Proof. Let U be the neighborhood as above. By the assumption there are C'*°
forms 6 of maximal degree on coordinates planes V' such that

W\U\Unxo =7 (0|W(U\U0Xo)> (3~15)

Notice both sides have extension to U by the continuity. Taking the closure (of
topology of X') both sides, we complete the proof. O

We’ll show the kernel of R, is not only C'°°, but also a local constant slicing,
therefore closed.

Proposition 3.7. Let o be the C*° kernel of de Rham’s requlator R.. Then
0e is a local constant slicing. Furthermore there is a chart U in the de Rham
covering for a meighborhood of each point such that

£ (3.16)

odu(x,y) = o1lu(—,
€ €

where X,y are points in the chart.

Remark. The C* kernel g, is a closed form. By the homotopy formula
(3.1) it represents the class of the diagonal in the cohomology group of X’ x X.
But o, is not the de Rham’s regularization of the diagonal.

Proof. For this particular local constant slicing o., we’ll give a concrete descrip-
tion in the following. It shows that the composition (3.13) for gluing is a local
fibre integral.
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Denote the boundary of each local ball B; in the de Rham data by 9;. Let
0 =>,0;. By Lemma 3.6, it suffices to consider the submanifold X — 9. So let
g€ X —0. Let Uy C X — 0 be a small neighborhood of ¢g. Consider the kernel
0%(x,y) of the de Rham’s regulator

Rc=R!o---oR" (3.17)

restricted to U; x Uy, where N is finite because the covering is locally finite.
Because we exclude 0, there are two cases for the points ¢. If ¢ € B; for some ¢,
Ri|y, by the definition is the identity. If ¢ € B; for some 4, then each R.|y, has
the C* kernel p}(x,y) where y is in the second copy of U,. Suppose there are n
regulators in (3.17), and they are in the order By, Bs,- -+, B,. Let’s denote the
coordinates for each U; D B; by the same letter x; for which we should restrict
ourselves to the domain B; . The kernel of each R! is

.x'iyi
9i (=~ 2,
HERRO)

which means for a current 7T,

; Xi LY
R.T = Vi(— — =
€ ~/yieT 1(6 E)

where the subtraction — (also 41—), scalar multiplication ¢ are from the linear
structure of U; in de Rham data (they are from the de Rham data). Next we
glue all pieces. The kernel o, of R, = Rl o---0 R} inside By N---N B, is the
fibre integral

- X1 I X X2 2 X3
’191 — = —)A ?92 —Z _2)A
Qe /(XZ:"‘7xn)E(Rm)@"—l 1( € € ) 1( c c )

Xp—1 "1 X, Xpn ™ Yn

?) A 19’1’(? - ?)7 (3.18)

NI

whose degree is m. So g, is the fibre integral of the local C*° form,

n

X3 n—1/Xn—1 n—1 X n(Xn Yn
RN NI (- R AT - )

| ‘ € €

1 2 n—1 n
I (x) —xo) A9 (%2 —x3) A AU H(X 1 — Xp) AI(Xn — Vi)

1 2

90 =) A0

denoted by
D, (3.19)

(of degree mn), in the projection of the Cartesian product
. m\®&(n+1 m m
P (R™M®CHD S R R (3.20)
where (R™)®(+1) have global coordinates

X1y Xny Yno
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and R, RY are the first and last copies. Above argument is a technical de-

scription of the kernel o..

To associated a local constant slicing form, we construct a commutative
diagram by first defining the diffeomorphism

K1 (Rm>$n+1 N (Rm)@n @Rm
1 n
(le"' ,Xnvyn) - (Xl_XQa"' 7Xn_Yn7yn)a

where y,, are the coordinates for the last copy R™, and each copy R™ has its
own linear structure. Then the projection (3.20) yields

0e = (P1).(sL9).

We denote the coordinates’ components in the target space (R™)®" @ R™
by
!/ /
X1 s Xy Yne

Notice the map has rank m(n — 1), and {7 is the pullback form by x1:

(0 = 0L(x)) AZ(x) A= AL (). (3.21)
So there is a commutative diagram

(Rm)EBnJrl ”_1> (Rm)EBn @ R™

Pil (P2,id)) (3.22)
m m (r2,id) m m
RY @ Ryn R™ @ Ryn
where N
K2 (X1,¥n) = X1 — ¥n
and

P, (X / ;L2 n-1_,
5 (X7, Xy,) X Xy X

is the map onto the first copy R™. Then the commutativity of (3.22) yields
0c = (P1)u(s\?) = (Ko, id)* (((Pg,id) o Kl)*(ge(Q))). (3.23)

In (3.23), ((P27 id)o /<;1> (ce(q)) is a trivial pullback of a form on R™. Hence o,

is a local constant slicing. This completes the proof.
O
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Example 3.8. Let X = R"™ be equipped with the standard linear basis e, -+ , €.
Let D be the particular n dimensional coordinate’s plane that transversally meets
the diagonal Agn at the origin (0,0) of R™ x R™. Eplicitly, if e}, €? are the
standard linear bases as above, for the first and second copies of R™ in R™ x R",

then D is the subspace spanned by vectors e} —e? fori=1,--- ,n. Let

k:R*"xR" = D

be the orthogonal projection of the product coordinates. Notice D isomorphic
to R™ (as a subspace). So D has an isomorphic de Rham data from X. In
particular, let du be the Lebesque measure of D. Let f be a C* function on
D with a compact support in a ball of the origin such that f is symmetric with
respect to the linear structure and

/Dfduzl.

( ({e:}, f) is a de Rham data of X). For a positive number €, the kernel o. of

the de Rham’s regulator is
1w
| =f(—)d
K <G,Lf(€) u)

1

where w is the coordinate of D in the basis e} —e? fori=1,--- n.

4 The intersection of currents

4.1 Convergence of regularization

Theorem 4.1.

Let X be a manifold endowed with de Rham data. Let Ty, Ty be two homo-
geneous Lebesque currents of dimensions p,q respectively.

(1) Let ¢ be a test form of degree p+ q —m. Then

e—0

lim [ RTx Ao (4.1)
T

exists.
(2) If ¢ is in a set of bounded forms in P(X),

li T 4.2
Eg% - Re 2 A ¢7 ( )

is bounded.
(8) Lebesgue currents are of order 0, i.e. for the Lebesgque current T and
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¢ € 2(U), there is an estimate

' / ¢‘ < Clidllox
T

where K is a compact set of a chart U, ||d||o,k is the supreme of absolute
values of coefficients of ¢ in the chart, and C is a constant independent

of ¢.

Proof. (1) Let Ty, T are homogeneous currents of dimensions p, ¢ respectively.
Then

/Tl R no=(=D" / 0c(x,y). (4.3)

(Tl ><T2)/\¢

By Proposition 3.7, the kernel g.(x,y) of R, is a local constant slicing. Thus
there exists countable, locally finite open covering U of X such that

Xy vV
0c(%,¥)|uxv = Ql(? €)|U><U = (9(;)), (4.4)
where 7 : U x U — V is a C* map to V ~ R™, and 6 is a C* m-form on

V. By a partition of unity it suffices show the convergence of (4.3) as ¢ — 0
supported in one open set U. That is the convergence of

[ e (4.5
(T1xT2)A¢

where v is the variable of . Now we consider a C*° map
T:UxU—=V.

The projection of a de Rham distribution of the current 77 x T A ¢ satisfies the
Lebesgue condition that gives a bounded, compactly supported L! function £
on V', and the Radon-Nikodym condition further implies that the limit

lim L(ev)f(v)

e—0 vev

that is

lim T (0(2)) (4.6)
=0 (T xTo) Ao €
exists. We complete the proof of part (1).

(2) Now we assume ¢ is in a set in Z(U) bounded to order 0. By the Lebesgue

condition, £ is bounded. Thus the local formula (4.6) is also bounded. Hence

lim RTH N @
e—0 T

is bounded.
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(3) Continue from part (2). Notice for Tp = 1, [;. ¢ is equal to (4.6). Let
the ¢ varies in a compact support K C U. We consider the

. A%
lim T 0(—).
PONTXX) A e ¢

Since W is bounded to order 0, by the Lebesgue condition of Tj, the

Lebesgue functions of 73 x X A W on V are bounded. Hence

Jim / oY) <
=0 J(1y x X)A €

o
Méllo x

where C' is a constant independent of ¢. Hence

. * V
[o| =l [ o) <l
T1 =0 )1y xX)ne €

We complete the proof.

4.2 The intersection

Definition 4.2. Let Ty, T5 be homogeneous Lebesgue currents on a manifold X
endowed with de Rham data. By Theorem 4.1, the functional on 2(X),

b—lim [ RTyAd
e—0

T

18 linear, continuous. Therefore we define the intersection current

[Ty A To] (4.7)
by the formula
/ p=lm [ RTA¢ (4.8)
[Tl/\TQ] =0 Ty

for a test form ¢. Hence there is a well-defined bilinear map, “current’s inter-
section” satisfying
CX)xC(X) = 9'(X)
(Tl, Tg) — [Tl A 712}7

dependent of de Rham data, where 2'(X) denotes the space of currents and
Z(X) the subspace Lebesgue currents.
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Remark The intersection [- A -] and de Rham’s regularization R, A, all
depend on the de Rham data. We’ll omit the notation for this dependence by
fixing a data in general arguments, but will make a note in a particular case
where the multiple de Rham data is necessary.

Proposition 4.3. IfTy,T, are Lebesgue, so is

[T1 A T3).
Remark The proposition extends Proposition 2.17.

Proof. We recall and continue the setting in Theorem 4.1. By the partition of

unity, we may assume
[Tl A\ T2]

has a compact support in a small neighborhood U of a chart. For the Lebesgue
condition we may take £ = 1 and [T} A T3] has a single de Rham distribution.
Next we have a projection to set up the Lebesgue condition. Let W C U be
a coordinates plane of the dimension dim[Ty A T3], and 7w : U — W the
projection. Then it suffices to consider the projection (7w ).«[T1 A T2] which has
maximal degree, so it is regarded as a distribution, denoted by Zy,. Then the
functional Zyy, is
¢ — pdp
(7w )« [T1 AT?)

where ¢ is a test function on W and dy is the volume form of W. According to
the formula (4.6), Zy is equal to

¢ — lim T (O(2)). (4.9)
=0Ty xTo) A(pdp) €

Now we rewrite the expression as follows. Recall V' is the orthogonal m di-

mensional plane of Ay in U x U. We project the current 77 x T the plane

V x (W x {0}) where {0} € U is the origin of the Euclidean space U. Notice

the projection has maximal degree. Since 77,75 are both Lebesgue currents,

the projection regarded as a distribution is a Lebesgue function, denoted by
L(v,w)
where v, w denote the points in V, W respectively. Then we can rewrite
/ ¢dp = lim L(ev, w)0(v)od(w)dp. (4.10)
I =0y x (W x{0})

Hence the distribution Zy, satisfies the Lebesgue condition and its Lebesgue
function on W, denoted by
L (W)
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lim Lev,w)l(v). (4.11)

e—0 vev

We should note the limit (4.11) exists due to Theorem 4.1 (part (1)). Fur-
thermore the Radon-Nikodym condition is just the zigzag convergence of the
number

lim L(ev, Dx(w))0(v)p(w)dp (4.12)
0 Jyx(Wwx{o})

as A I 0, where Dy is the testing map defined in (2.3). Since £ is an L!
function satisfying Radon-Nikodym condition, the convergence of (4.12) indeed
holds. We complete the proof.

O

Proposition 4.4. (intersection of the supports) Let T1,T>» € C(X). Then

supp([T1 A T»]) C supp(T1) N supp(T>). (4.13)

Proof. Suppose
a ¢ supp(Th) N supp(13).

Then a must be outside of either supp(T}) or supp(Ts). Let’s assume first it is
not in supp(Tz). Since the support of a currents is closed, we choose a small
neighborhood U, of a in X, but disjoint from supp(T). Let ¢ be a C*°-form
of X with a compact support in U,. Then by Definition 3.1. when € is small
enough R (T») is zero in U,. Hence

/ 6=0, (4.14)
[Ty AT3]

for a test form ¢ supported in U,. Hence a ¢ supp([Th A Tz]). If a & supp(Th),
Ua can be chosen disjoint with supp(T1). Then since ¢ € 2(U,) is a C*°-form
of X with a compact support in U, disjoint with supp(T}), the restriction of ¢

to 17 is zero. Hence
/ 6= 0.
[Tl/\TQ]

Then a ¢ supp([Ty A Tz]). Thus

a ¢ supp(T1) N supp(Ty)

will always imply
a ¢ supp([Ty A T3)).
This completes the proof.
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Example 4.5. Let X = R™ be equipped with de Rham data consisting of single
open set with the convolution function f. Assume it has coordinates 1, -+ , Ty,.
Let

T1:50d1:1/\~~-/\dxp, O<p<m

with the d-function ég at the origin 0 of R™. Let Ty be the p dimensional plane
{zpt1 =+ = xm = 0}. Now we consider the integral

R.T». (4.15)

T

By the formula (3.6), it is equal to

1 xr —
/T/T . e—mf(Ty)dprrl/\-~-/\d$m/\dy1/\~--/\dyp.
x€ly JyeTo=RP

By the continuity of the functional of the currents, we can interchange the order
of T1,T5. Thus we first evaluate Ty at the differential form

1 _
e—mf(m . y)dmpH A ANdzp,

to obtain that

le R.T
o (416)
(71)m(mfp) yERP €em ( eylv"’, gpaoa"' ao)dyl/\/\dyp
Since ) .
Loz o0 Y 0o 0)dyr A A d
fyeRp P ( c y e 1Yy , ) Y1 Yp (4.17)

= (_l)pfyeRp f(y17 7y;0707"' 7O)dy1/\/\dyp

18 a mon-zero constant, le R. Ty diverges to infinity as e — 0. Hence the inter-
section [- A -] does not exist for such Ty, Ty.

Example 4.6. (Deligne) Let X = R? be equipped with the de Rham data that
has a single chart R? with the convolution function f. Let A be the current of
the upper half plane, B the current of the lower half plane, and dg the current of
delta function at {0}. Letb = fB fdu and a = fA fdu where dp is the Euclidean
measure for the plane. Notice a,b could be any real number dependent of de
Rham data. Then

[B A dg] = bdg (by the direct computation) (4.18)
[A A[B A 50}] = abdo (follows from (4.18)) (4.19)
[A A B] =0 (since it is supported on a lower dimension) (4.20)

[[A A B] A 50] =0 (follows from (4.20)) (4.21)
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v oo 4 1]

Hence the intersection [- A -] is not associative.

Remark It is also expected that the intersection is not commutative.

A Appendix: Kernel

In [3] de Rham created the notion of “regularizing operator” which includes de
Rham’s regulator R.. Let X,) be two manifolds. Let L € 2'(X x Y). There
is a homomorphism

2(X)x 2()) — R

Al
(P2, Py) = [, ba Ny (A-1)

It leads to another homomorphism
ANoX) = 2'()) (A.2)

Then L is called the kernel of A. Conversely given a homomorphism A, there is
a kernel current L on X x ). Notice

2(%), &)
N n (A.3)
&'(x),  2'0)

where &(e) is the set of C* forms, and ’ is the topological dual.

Definition A.1. (1) If A can be extended to a continuous homomorphism
A:E(X) —» 2(V) (A.4)
we say A is reqular.
(2) If furthermore, the reqular A has the image inside of &(Y), i.e.
A:E(X) = ) (A.5)

we say A is reqularizing.

Theorem A.2. (de Rham)
A is regularizing if and only if the kernel L is a C*° form on X x Y. In
particular R is regularizing.
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