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Abstract

We have shown a method of constructing cycle classes of cohomology
in [9]. Consequently, we go further in this paper to show a proof of the
generalized Hodge conjecture.
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1 Main theorem

The Hodge conjecture was proposed in 1950 ([5]). It predicts on a smooth
projective variety over C, the filtration of cohomology determined by Hodge’s
bi-grading coincides with the filtration determined by subvarieties.
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1 MAIN THEOREM 2

Precisely it can be described in Grothendeick’s formulation as follows ([3]).
Let X be a smooth projective varieties X over C, with dimension n. Let
H(X;Q) denote the total singular cohomology with rational coefficients and
we’ll add superscript to denote the degree. We denote the linear span of all
sub-Hodge structures of coniveau i and degree 2i+ k by

M iH2i+k(X) ⊂ H2i+k(X;Q)

where the indexes have the range 0 ≤ 2i+ k ≤ 2n, 0 ≤ i ≤ n. On the geometric
side, the coniveau filtration

N iH2i+k(X)

denotes the linear span of kernels of the linear maps

H2i+k(X;Q) → H2i+k(X −W ;Q) (1.1)

for an algebraic setW of codimension at least i. BothN iH2i+k(X),M iH2i+k(X)
are subspaces over Q. Then Grothendieck proposed

Conjecture 1.1. For whole numbers i, k satisfying i ≤ n and 2i+ k ≤ 2n

N iH2i+k(X) = M iH2i+k(X). (1.2)

To prove the conjecture, we’ll use the equivalent index, level (instead of
coniveau). So we re-organize them to form two filtration, called level filtration:

(I) Geometrically leveled filtration N•(X). For each k ∈ {0} ∪ N,

Nk(X) =

∞∑
i=−∞

N iH2i+k(X) (1.3)

with
N0(X) ⊂ N1(X) ⊂ · · · ⊂ H(X;Q), (1.4)

(II) Hodge leveled filtration M•(X). For each k ∈ {0} ∪ N,

Mk(X) =

∞∑
i=−∞

M iH2i+k(X) (1.5)

with
M0(X) ⊂ M1(X) ⊂ · · · ⊂ H(X;Q), (1.6)

A cycle in Nk(X) will be called Nk leveled and a cycle in Mk(X) will be
called Mk leveled.

By Corollary 8.2.8, [1], Nk(X) is the sub-Hodge structure. Hence filtrations
satisfy

Nk(X) ⊂ Mk(X) for all k,X (1.7)
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Theorem 1.2. (Main theorem) Conjecture 1.1 is correct.

Acknowledgment Thanks are due to my wife Jessie Liu for her life long
support.

2 Idea

2.1 Real intersection theory and Grothendieck duality

The central idea is to approach the coniveau filtration in currents for which
we can use the measure-theoretical analysis. The analysis builds the technical
foundation – real intersection theory ([8]) that assures that there is a special type
of currents inside of D ′(X ) (topological dual of smooth forms with a compact
support), called Lebesgue currents which include singular chains and C∞-forms,
and they form a subspace denoted by L (X ). For any two Lebesgue currents
T1, T2, we defined an extrinsic intersection current as the limit of the de Rham’s
regularization ([2]), denoted by

[T1 ∧ T2]. (2.1)

The intersection is also Lebesgue, but it depends on a special type of extrinsic
covering on the manifold called de Rham data. This intersection is the exten-
sion of classical intersections that include the transversal intersection on real
manifolds; the proper intersection on smooth projective varieties; products on
cohomology ring and Chow ring. It leads to an important idea which replaces
the algebraic cycles by the classes supported on the algebraic sets. As a result,
we obtain the Grothendieck duality.

Theorem 2.1. ( Grothendieck duality. See [9]) Let X be a smooth projective
variety over C with dimension n. For whole numbers p, q, k satisfying p + q =
n− k, the homomorphism

NpH2p+k(X) → NqH2q+k(X)
α → α ∪ uq−p

is an isomorphism, where u ∈ H2(X;Z) is the hyperplane section class.

Remark The duality for k = 1 is the Lefschetz standard conjecture over
the complex numbers ([4]). In this paper we show the Hodge conjecture is the
natural consequence of Grothendieck duality, but in need of a delicate finesse.
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2.2 The finesse – induction for the Hodge conjecture

Recall the assertion of Main theorem is

MpH2p+k(X) = NpH2p+k(X), (2.2)

for the indexes as in Theorem 2.1. By Corollary 8.2.8, [1], we have the inclusion

NpH2p+k(X) ⊂ MpH2p+kH(X) for all p, k. (2.3)

Since they are finitely dimensional vector spaces over a field, it is sufficient to
show that they have equal dimension. Let’s focus on the dimension only. By
the formula (2.3),

dim

(
NpH2p+k(X)

)
≤ dim

(
MpH2p+kH(X)

)
. (2.4)

Applying the intersection form, we obtain the homomorphism

MpH2p+kH(X) ≃
(
MqH2q+kH(X)

)∗

→
(
NqH2q+kH(X)

)∗

≃(
NpH2p+kH(X)

)∗
(2.5)

where the vertical isomorphism is the Grothendieck duality. Therefore to show

dim

(
NpH2p+k(X)

)
≥ dim

(
MpH2p+kH(X)

)
it is sufficient to show

Proposition 2.2. The homomorphism induced from the intersection form,

MpH2p+k(X) → (NqH2q+k(X))∗ (2.6)

is injective.

In terms of intersection numbers, the proposition, by the Grothendieck du-
ality, is equivalent to the claim

Claim 2.3. for any non-zero cycle α of Hodge level k (i.e, Mk leveled) there is
a cycle β of geometric level k (i.e. Nk leveled) such that the intersection number
between them is non-zero.

The proof heavily relies on the Grothendieck duality (i.e. Theorem 2.1)
that furthermore reduces the proposition to the essential caseI in the middle

IZuker in [10] also dealt with this case, but the situation is quite different due to the
difference in our fundamental views.
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dimension 2p + k = n. So for the following sketch, we focus on the middle
dimension only.

In the following technical arguments we’ll abuse the pushforward notation
(•)∗ for singular cycles, algebraic cycles and classes in cohomology. The classical
results for these operators confirm that they preserve the levels on both filtra-
tions provided the maps are holomorphic. Also the angle bracket ⟨∗⟩ denotes
the descend of the object ∗ to cohomology.

We denote the collection of all smooth projective varieties X with

H1(X;Q) ̸= 0 (2.7)

by
Corr1(C).

First we assume p ̸= 1. Since the case of p = 0 is trivial, so p ≥ 2. Next we
use induction on n. When n = 1, 2, 3, the proof for most of cases follows from
the well-known Lefschetz (1, 1) theorem. So let’s see the main case for n ≥ 4.
Suppose Proposition 2.2, therefore Main theorem hold for all X ∈ Corr1(C) of
dim(X ) < n. Let’s consider X ∈ Corr1(C) with

dim(X) = n.

Let α ∈ MpH2p+k(X) such that 2p + k = n. Let E be an elliptic curve, and
a, a′ ∈ H1(E;Q) be a standard basis,

a ∪ a = 0 = a′ ∪ a′, a ∪ a′ = 1.

Let
Y = X × E ∈ Corr1(C).

Next we trace the intersection numbers occurring in X and Y . Notice that

α⊗ a′ ∈ MpH2p+k+1(Y ;Q).

Since the Poincaré duality is compatible with the sub-Hodge structures, there
is a non-zero

θ ∈ MpH2p+k+1(Y ;Q)

such that
(α⊗ a′, θ)Y ̸= 0. (2.8)

Let θ be generic in MpH2p+k+1(Y ;Q). We call it “dual” of α⊗ a′. Let

P : Y → X (2.9)

be the projection. Taking the integration along the fibre, we have the class

P∗(θ) ∈ Mp−1H2p+k−1(X) (2.10)
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in Mk+1. Because θ ∈ MpH2p+k+1(Y ;Q) is generic and P∗ is surjective, so
P∗(θ) is also generic in Mp−1H2p+k−1(X). Notice ur ∪ H1(X;Q) (or ur ∪
H0(X;Q)) for a some r ≥ 0 is contained in Mp−1H2p+k−1(X). Hence the
assumption H1(X;Q) ̸= 0 implies P∗(θ) ̸= 0. Notice P∗(θ) is a cycle on X and
by the hard Lefschetz theorem,

P∗(θ) ∪ u ̸= 0

in cohomology of X. Next we move the cycles to another variety. Let

Xn−1 ∈ Corr1(C)

be a smooth hyperplane section of X, and

i : Xn−1 → X (2.11)

be the embedding. By Lefschetz hyperplane theorem,

i∗(P∗(θ))

is non-zero and Mk+1 leveled on the lower dimensional variety Xn−1 (Both
Hodge level and geometric level are preserved under the pullback of a homolo-
morphic map). Since

Xn−1 ∈ Corr1(C),
by the inductive assumption, i∗(P∗(θ)) becomes Nk+1 leveled.

Since
i∗ ◦ i∗(P∗(θ)) = P∗(θ) ∪ u

and i∗ is the Gysin homomorphism,

P∗(θ) ∪ u

is also Nk+1 leveled. By Grothendieck duality, since the cycle

P∗(θ) ∪ u ∈ NpH2p+k,

P∗(θ) ∈ Np−1H2p+k−1(X)

i.e. P∗(θ) is Nk+1 leveled (In this step, we turned the cycle from Hodge leveled
to geometrically leveled. ). Next we need an important lemma,

Lemma 2.4. If P∗(θ) is Nk+1 leveled, θ is also Nk+1 leveled , i.e.

θ ∈ NpH2p+k+1(Y ). (2.12)

Remark However P∗(θ), θ are from different ambient spaces.

Lemma 2.4 will be proved by a similar induction. Afterwards have the final
step which is called the “descending construction”. It extracts a cycle of lower
geometric level from θ that has a higher geometric level. This requires the real
intersection theory.
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Lemma 2.5. There is a class β ∈ NqH2q+k(X) such that

(α⊗ a′, θ) = (α, β) ̸= 0. (2.13)

Both lemmas 2.4, 2.5 are based on the real intersection theory.

To finish the proof, we deal with the case where p = 1. In this case we already
have Proposition 2.2 for p ̸= 1 for varieties in Corr1(C). Thus for an arbitrary
smooth projective X, we take X × E ∈ Corr1(C) to allow the coniveau=2 to
obtain a non-zero intersection number. Then use the projection to get back to
the original variety X. This completes all cases for Proposition 2.2 for X. At
last we notice that the formula (2.2) holds on X if and only if it holds on X×E
where E is an elliptic curve. We complete the proof of Proposition 2.2.

2.3 Organization

In Section 3, we give the initial verification of the induction. In Section 4, we
show the inductive step. In appendix, we complete a lemma for Section 4.

3 Surfaces and threefolds

Let X be smooth projective variety over C. In this section we prove

Proposition 3.1.
Nk(X) = Mk(X) (3.1)

for all X of dim(X) ≤ 3.

Proof. When X is a curve, the proposition holds by the classical theory for
curves. Next we consider two cases.

3.1 Surfaces

Assume dim(X) = 2.
We have

N0(X) =

2∑
i=0

N iH2i(X;Q).

By the Lefschetz theorem on (1,1) classes,

2∑
i=0

N iH2i(X) =

2∑
i=0

M iH2i(X) = M0(X).
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Now we consider the level 1.

N1(X) = N0 ⊕N0H1(X)⊕N1H3(X).

Thus
N1(X) = M0 ⊕H1(X;Q)⊕N1H3(X).

By the Grothendieck duality,

N1H3(X) ≃ N0H1(X) = H1(X;Q) = M0H1(X).

For sub-Hodge structures,

M0H1(X) ≃ M1H3(X).

Thus because M0H1(X) = H1(X;Q),

N1H3(X) ≃ M1H3(X).

Then N1(X),M1(X) have the same dimension. Therefore

N1(X) = M1(X).

The maximal level k = 2 is a trivial case. Now we conclude

Nk(X) = Mk(X)

for dim(X) = 2.

3.2 3-folds

Assume dim(X) = 3.
In this case, the levels could only be k = 0, 1, 2.
If k = 0, we need to show the perfect intersection between

M1H2(X)×N2H4(X). (3.2)

M2H4(X)×N1H2(X). (3.3)

For both, we use the Lefschetz theorem for (1, 1) class and the Poincaré
duality.

If k = 1, we should prove the only case

Theorem 3.2. On any 3-dimensional smooth projective variety X over C,

N1H3(X) = M1H3(X).
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Proof. Deligne’s lemma 8.2.8, [1] implies that

N1H3(X) ⊂ M1H3(X).

Thus it is sufficient to prove

M1H3(X) ⊂ N1H3(X). (3.4)

It starts with a classical result in [6] as follows. Let L ⊂ H3(X;Q) be a
sub-Hodge structure of coniveau 1. Then it is polarized, and there is a smooth
projective curve C, and a Hodge cycle

Ψ ∈ Hdg4(C ×X) (3.5)

such that
Ψ∗(H

1(C;Q)) = L. (3.6)

where Ψ∗(H
1(C;Q)) is the image of the correspondence of classes ∈ H1(C;Q).

Next we use the real intersection theory to represent the cohomological formula
(3.6) as

P∗

[
T ∧

(
(•)×X

)]
, (3.7)

where T is a singular cycle representing the class Ψ and C × X is equipped
with a de Rham data. Also we should note that P∗ is the projection of singular
cycles. By Property 1.3, II, [8] represent all classes in L. Next we adjust the
position of T homotopically. Notice P∗ on cohomology is a Hodge morphism,
so P∗(Ψ) is a Hodge class of degree 2 on the 3-fold X. By the Lefschetz (1,1)
theorem P∗(Ψ) is algebraic on X. So there is a singular cycle TΨ on C × X
representing the class Ψ such that the projection in singular cycles satisfies

P∗(TΨ) = S + bW (3.8)

where S is an algebraic cycle S (a divisor of X), and bW is an exact cycle of
real dimension 4 in X. Consider another singular cycle in C ×X

T := TΨ − [e]× bW (3.9)

denoted by T , where [e] is a current of evaluation at a point e ∈ C. By adjusting
the singular chain W continuously, we can assume the projection of the support
of T satisfies

P (supp(T )) = supp(P∗(T )), (3.10)

i.e. the projection of the support is the support of the projection. (See appendix
for the proof). Thus we have the projection of singular cycle

P∗(T ) = S. (3.11)

Let Θ be the collection of closed singular cycles on C representing the classes
in H1(C;Q). Recall we applied the real intersection theory to establish the
correspondence of currents ([8]),

T⋇(Θ) (3.12)
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defined as a collection of currents in the form

T⋇(α)

for α ∈ Θ. So it is a collection of currents supported on the algebraic set of

P∗(T ) = S,

i.e. the currents in L are all supported on the algebraic set |S|. This is a
criterion for coniveau filtration in terms of currents, i.e. for β ∈ T⋇(Θ), the
cohomology class ⟨β⟩ of β satisfies

⟨β⟩ ∈ ker

(
H3(X;Q) → H3(X − |S|;Q)

)
. (3.13)

This shows L ⊂ N1H3(X). We complete the proof.

If k = 2, we need to show the intersection form is perfect on

M1H4(X)×N0H2(X). (3.14)

Notice
M1H4(X) ≃ M0H2(X).

Since
M0H2(X) = N0H2(X)

dim(M1H4(X)) = dim(N0H2(X)).

We complete the proof.

4 Proof

Let’s prove claim 2.3, i.e. Proposition 2.2. It is divided into two cases: subsec-
tion 4.1 for non-middle dimension, subsection 4.2 for middle dimension.

4.1 Non-middle dimension

The following proof is the standard verification in cohomology (except the
Grothendieck duality). Suppose q > p. Let α ∈ MpH2p+k(X) be a non-zero
cycle. Let

h = q − p > 0.

Then by the hard Lefschetz theorem αuh ̸= 0 in H2q+k(X;Q). Let

Y = X ∩ V h
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be a smooth plane section of X and

i : Y ↪→ X (4.1)

be the inclusion map. Note Y is irreducible. Then applying Lemma 6.2, [7], we
obtain that

αuh = i∗ ◦ i∗(α).

Hence i∗(α) ̸= 0 in H2p+k(Y ;Q). By Proposition 5.2, [7]

i∗(α)

is also Mk leveled. Since h > 0, we can apply the inductive assumption to the
variety Y to obtain a Nk leveled cycle β such that

(i∗(α), β)Y ̸= 0. (4.2)

Then applyig Lemma 6.2 , [7], we have

(α, i∗(β))X = (i∗(α), β)Y ̸= 0 (4.3)

Notice by Proposition 5.2, [7], i∗(β) is Nk leveled. Thus the intersection form
is perfect. Next we consider the case q < p. Let h = p− q > 0. We start with

α ∈ MpH2p+k(X).

Using hard Lefschetz theorem there is a αh ∈ H2q+k(X;Q) such that

α = αhu
h. (4.4)

By the same argument above we obtain a Nk leveled cycle β in H2p+k(X;Q)
such that

(αh, β)X ̸= 0. (4.5)

Now applying Theorem 2.1, there is a Nk leveled cycle βh ∈ H2q+k(X;Q) such
that

βhu
h = β. (4.6)

Then (4.5) becomes

(αh, βhu
h)X = (αhu

h, βh)X = (α, βh)X ̸= 0. (4.7)

where βh is Nk leveled. Thus we complete the proof of Claim 2.3 for the case
p ̸= q.
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4.2 Middle dimension

Proof. of Claim 2.3 for the middle dimension, i.e. 2p + k = n. We use an
induction. Suppose Proposition 2.2, therefore Main theorem hold for all

X ∈ Corr1(C), 4 ≤ dim(X ) ≤ n− 1.

We assume X ∈ Corr1(C) with dim(X) = n. We would like to prove the claim
2.3, i.e. for α ∈ MpH2p+k(X;Q), there is a

β ∈ NpH2p+k(X;Q)

such that
(α, β)X ̸= 0

where q = n− p− k and (•, •) denotes the intersection number.

Since p = 0 is a trivial case, it suffices to prove two cases: 1). p ≥ 2; 2).
p = 1.

Case 1: p ≥ 2.
Let E be an elliptic curve and

Y = X × E.

Also let
P : Y → X

be the projection. Let a, a′ ∈ H1(E;Q) be a standard basis, i.e.

a ∪ a′ = 1, a ∪ a = a′ ∪ a′ = 0.

Let
Λ ⊂ Hn(X;Q) (4.8)

be a sub-Hodge structure of X of level k, containing α. Then

Λ⊗H1(E;Q) (4.9)

is the sub-Hodge structure of Y of level k + 1 containing α⊗ a′. Thus

α⊗ a′ ∈ MpH2p+k+1(Y ). (4.10)

Applying the Poincaré duality for sub-Hodge structures, we obtain

θ ∈ MpH2p+k+1(Y )

such that
(α⊗ a′, θ)Y ̸= 0. (4.11)

We can choose θ to be generic in MpH2p+k+1(Y ), i.e. it has Hodge level

k + 1.
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Next we turn the level from Hodge to geometric (a key step). We consider the
Gysin homomorphism

P∗ : H•(Y ;C) → H•−2(X;C) (4.12)

If n is odd,
Mp−1H2p+k−1(X)

is non-zero because it contains a non-zero cycle u
n−1
2 . If n is even, it contains

subspace H1(X;Q)u
n
2 −1 which is also non-zero by the assumption. Hence the

im(P∗) = Mp−1H2p+k−1(X) ̸= 0.

Since θ is generic in the linear space MpH2p+k+1(Y ), P∗(θ) ̸= 0. Notice

2p+ k − 1 = n− 1

is less than middle dimension of X. Applying the hard Lefschetz theorem on
X, P∗(θ) ∪ u is non-zero in

MpH2p+k+1(X).

Let
i : Xn−1 ↪→ X (4.13)

be the inclusion map of a smooth hyperplane section Xn−1. Then by lemma
6.2, [7]

i∗ ◦ i∗(P∗(θ)) = P∗(θ) ∪ u. (4.14)

Because P∗(θ) ∪ u is non-zero, neither is

i∗(P∗(θ)).

Notice
i∗(P∗(θ)) ∈ Mp−1H2p+k−1(Xn−1). (4.15)

and
dim(Xn−1) = n− 1, Xn−1 ∈ Corr1(C).

By the induction, the Hodge level turns to geometric level, i.e.

i∗(P∗(θ)) ∈ Np−1H2p+k−1(Xn−1). (4.16)

Hence by the formula (4.14)

P∗(θ) ∪ u ∈ NpH2p+k+1(Xn−1). (4.17)

( The Gysin map i∗ preserves the level for both filtrations). Applying the
Grothendieck duality, we obtain that

P∗(θ) ∈ Np−1H2p+k−1(X). (4.18)
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In the following we prove Lemma 2.4, i.e

θ ∈ NpH2p+k+1(Y ) (4.19)

i.e. P∗(θ), θ should have the same level in their own ambient varieties.

Proof of Lemma 2.4: First we use singular cycles. Let T ′
θ be a singular cycle

on Y representing θ. By Lemma A.4, there is another singular cycle T ′′
θ on Y

finite to X such that
T ′′
θ = T ′

θ + dK (4.20)

where the “finite ” is defined in Definition A.1 as being finite-to-one as a map.
Because T ′′

θ → X is finite, by taking multiple barycentric subdivisions,

P : Y → X

is diffeomorphic to its image restricted to the interior of each n + 1-simplex of
T ′′
θ . Assume the push-forward P∗(T

′′
θ ) is again a singular cycle of dimension

n+ 1 in X. By the formula (4.18), the cohomology class of P∗(T
′′
θ ) is

P∗(θ) ∈ Np−1H2p+k−1(X) (4.21)

(which is geometrically leveled). Hence we have formula

P∗(T
′′
θ ) = Ta + dL, (4.22)

where Ta is supported in an algebraic cycle Z ′ of codimension p− 1, and L is a
singular chain. Now we let

Tθ = T ′′
θ − dL× {e}. (4.23)

where e ∈ E is a point. Because P : Tθ → X is again finite-to-one on the an
Euclidean open set, the singular cycle Tθ must lie in the algebraic set

Z = Z ′ × E

of codimension p− 1. The following graph summarizes what we obtained

Spaces Cohomology Singular Cycles Algebraic subsets
−−−− −−−−−− −−−−−−−−− −−−−−−−−−

Y θ Tθ ⊂ Z
↓ P ↓ P∗ ↓ P∗ ↓ P

X P∗(θ) Ta ⊂ Z ′

(4.24)

To continue, we let Z̃ be the smooth resolution of Z. We have the following
composition map j:

j : Z̃ → Z → Y. (4.25)
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By Corollary 8.2.8, [1], there is an exact sequence

Hk+3(Z̃;Q)
j∗→ H2p+k+1(Y ;Q) → H2p+k+1(Y − Z;Q). (4.26)

Since non-zero Tθ is supported on Z, Proposition 3.1, [7] asserts the cohomology
class θ is in the kernel of

H2p+k+1(Y ;Q) → H2p+k+1(Y − Z;Q). (4.27)

Hence there is a class
θZ̃ ∈ M1Hk+3(Z̃) (4.28)

such that
j∗(θZ̃) = θ. (4.29)

In the following we discuss a couple of cases for the class θZ̃ on Z̃, whose
dimension is

p+ k + 2 = 2− p+ n

and it lies in Corr1(C).
(a) If the coniveau p > 2, then k + 4 < dim(Z) < n. By the assumption of

the induction
θZ̃ ∈ N1H3+k(Z̃). (4.30)

( Hodge level turns into geometric level). By [7], the geometric level of cycle
classes under the Gysin homomorphism j∗ must be preserved. Thus we obtain
that,

j∗(θZ̃) = θ ∈ NpH2p+k+1(Y ). (4.31)

This proves Lemma 2.4 for case (a).

(b) If p = 2, then Z has dimension n = k + 4. Thus k + 3 is not a middle
dimension for Z̃. Then we consider the Grothendieck duality

u : M1Hk+3(Z̃) → M2Hk+5(Z̃) (4.32)

where u is a hyperplane section class represented by the hyperplane V . Let

l : V ∩ Z̃ ↪→ Z̃

be the inclusion map. Then
l∗(θZ̃) (4.33)

is a class on V ∩ Z̃ which must be Mn−3 leveled. Since V ∩ Z̃ has dimension

k + 3 = n− 1II

and V ∩ Z̃ ∈ Corr1(C), we apply the induction to obtain that

l∗(θZ̃) (4.34)

IIThis shows that the lowest n for our method is 4. Our method does not apply to the case
n = 2 or 3.
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is Nn−3 leveled in V ∩ Z̃. Notice

l∗ ◦ l∗(θZ̃) = θZ̃ ∪ u (4.35)

Hence θZ̃ ∪ u is Nn−3 leveled in Z̃. Now we use Grothendieck duality which
guarantee

θZ̃

is Nn−2 leveled in Z̃ (Hodge level turns into geometric level).
In terms of the coniveau, it says

θZ̃ ∈ N1H3+k(Z).

Next we repeat the part (a) to complete the proof for Lemma 2.4.

At last we use “descending construction” – Lemma 2.5 to extract a lower
geometric level from the higher geometric level, θ.

Proof of Lemma 2.5: Applying Lemma 2.4, we obtain a non-empty algebraic
set W of dimension at most p+ k+1 such that θ is Poincaré dual to a singular
cycle inside of W , i.e.

supp(Tθ) ⊂ W. (4.36)

Applying the Künneth decomposition, the singular cycles Tθ must be in the
form of

β ⊗ b+ β′ ⊗ b′ + ς + dK (4.37)

where β, β′ represent cycles in X, whose cohomology have Hodge levels k, b, b′

represent a, a′, dK is exact and ς is the sum of currents in the form ζ ⊗ c with
deg(c) = 0, 2. We should note that the decomposition is in Lebesgue currents,
where the tensor product is the current’s tensor product. So we apply the real
intersection theory ([8]). To prepare for the intersection of currents, let E,X
be equipped with de Rham data and X × E be equipped with the product de
Rham data. Choose a singular cycle b′′ in E such that the intersection satisfy

[b′′ ∧ b′] = 0, [b′′ ∧ b] = {e}

where e ∈ E (i.e. b′′ and b′ have the same cohomology.) Then we use the
intersection in real intersection theory to obtain that the currents’ intersection

[(X ⊗ b′′) ∧ Tθ] = [(X ⊗ b′′) ∧ dK] + β ⊗ {e} (4.38)

is a Lebesgue current supported on W ( (4.38) requires Leibniz rule in II, [8]).
Formula (4.38) has implications in two different aspects of the cohomology.

(1) Level in level filtration. Let W̃ be a smooth resolution of the scheme
W . We obtain the diagram

Hk+2(W̃ ;Q)
µ∗→ H2p+k+2(Y ;Q)

R→ H2p+k+2(Y −W ;Q)
ν∗↘ ↓P∗

H2p+k(X;Q) ,

(4.39)
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where the top sequence is the Gysin exact sequence, and ν∗, which is a Gysin
homomorphism, is the composition of Gysin homomorphism µ∗, P∗. Now we
consider (4.39). Notice Tθ is supported on W . Then the real intersection theory
implies that the intersection

[(X ⊗ b′′) ∧ dK] + β ⊗ {e}

is also supported on W . Hence the current β ⊗ {e} is supported on W . By
Proposition 3.1, [7], cohomology of β ⊗ {e}, denoted by

⟨β ⊗ {e}⟩

is in the kernel of R. Hence it has a pre-image

ϕ ∈ Hk+2(W̃ ;Q).

Because µ∗ is an algebraic correspondence, ϕ can be chosen to have Hodge level
k(this is due to the strictness of the morphism of Hodge structures). Since
the dim(W̃ ) = p < n, the inductive assumption says the Hodge level is the
geometric level. The Gysin image ν∗(ϕ) then also has geometric level k. The
class

P∗⟨β ⊗ {e}⟩
is represented by the current β. Hence β representing the class ν∗(ϕ) is Nk

leveled.
(2) Toplological intersection number. On the other hand the intersec-

tion number by (2.8) satisfies

(α⊗ a′, θ)Y = (α, ⟨β⟩)X ̸= 0. (4.40)

Part (1), (2) conclude β represents the cohomology class of geometric level
k and satisfies the condition in Lemma 2.5.

Case 2: Coniveau p = 1.
Now we deal with the case when p = 1. In this case we already have all

Proposition 2.2 for p ̸= 1. We consider α ∈ M1Hn(X) where n = dim(X)
is any whole number. Then as before E is an elliptic curve, Y = X × E and
a, a′ ∈ H1(E;Q) form a standard basis in the cohomology ring. In the following
we’ll use the projection P : Y → X, but on a different type of cycles. First

α⊗ 1 ∈ M1Hn(Y ). (4.41)

Let θ ∈ M2Hn+2(Y ) be its dual, i.e. a generic vector in the cohomology that
the intersection number (α⊗ 1, θ) ̸= 0. By the Proposition 2.2 for p ̸= 1,

M2Hn+2(Y ) = N2Hn+2(Y )

(geometric coniveau is 2) we obtain that

θ ∈ N2Hn+2(Y ).
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Now we apply the Künneth decomposition for classes,

θ = β ⊗ ω + β′′ ⊗ a+ β′ ⊗ a′ + γ ⊗ 1 (4.42)

where ω is the fundamental class of a point of E. Because P∗(θ) and θ will have
the same geometric level, P∗(θ) lies in

N1Hn(X).

Looking back to the formula (4.42), P∗(θ) = β. This shows

β ∈ N1Hn(X).

On the other hand, we see that

(α⊗ 1, θ)Y = (α, β)X ̸= 0. (4.43)

Hence the intersection form on

M1Hn(X)×N1Hn(X)

is perfect. Hence
M1Hn(X) = N1Hn(X).

We complete the proof for X ∈ Corr1(C).

At last we choose an arbitrary n-dimensional smooth projective variety X
that may not be in

Corr1(C).
Let α ∈ MpH2p+k(X;Q) be non-zero, where 2p+ k = n. Then

α⊗ 1 ∈ MpH2p+k(X × E)

is non-zero. Since X×E ∈ Corr1(C), Proposition 2.2 holds on X×E. So there
is a cycle

θ ∈ Np+1H2p+k+2(X × E)

such that
(α⊗ 1, θ) ̸= 0. (4.44)

Now we use Künneth decomposition to express

θ = β ⊗ ω + β′′ ⊗ a+ β′ ⊗ a′ + γ ⊗ 1 (4.45)

as in (4.42). Recall P : X × E → X is the projection. In general Gysin homo-
morphism preserves the geometric level. Since P∗ is the Gysin homomorphism,

P∗(θ) = β ∈ NpH2p+k(X × E). (4.46)

On the other hand,
(α⊗ 1, θ) = (α, β) ̸= 0. (4.47)

We complete the proof for Proposition 2.2.
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A Support of the projection

In this Appendix, we study the supports of cellular cycles in a Cartesian product.

Let X be a compact manifold of dimension n. We use the following setting
in algebraic topology. A p-singular simplex S consists of three elements: a p
dimensional polyhedron ∆p in Rv, an orientation of Rv, and a C∞ map f of Rv

to X. A chain is a linear combination of singular simplexes. The support |S| of
S is the image of S in X. A point in S is a point in |S|.

Let Y be another compact manifold of dimension m. Let

P : Y × X → X (A.1)

be the projection.

Definition A.1. Let σ be a C∞ p-singular simplex of Y × X . Let a be an
interior point of σ. If

P−1 ◦ P(a) ∩ σ

is a finite set, we say σ is finite at a. If σ is finite at all interior points of σ,
we say σ is finite to X . The chain is finite if each simplex in the chain is finite.

Proposition A.2. For any C∞ p-singular simplex σ in the coordinates chart
of Y ×X with p ≤ dim(X ), there is barycentric subdiviosn (multiple times) of σ

Sd(σ) =
∑

finite i

Ci, (A.2)

such that each simplex Ci is homotopic to a simplex finite to X and the homotopy
is a constant on the ∂Sd(σ)

Proof. Let
Rm,Rn,Rm × Rn

be the coordinate’s charts for Y,X ,Y × X respectively such that p ≤ n. We
would like to show that there is a multi barycentric subdivision to divide σ to a
chain

∑N
i=0 σi (a sum of smaller regular cells σi) such that there are homotopy

σ′
i for each σi that is finite to Rn, and boundary of σ′

i is the same as that of σi.
We use a claim to construct such small simplex σi.

Claim A.3. Let g : Rk → Rl be a C∞ map with l ≥ k. Let q ∈ Rk be a point.
Then there is an open ball B of q and continuous map g′ : Rk → Rl. such that

1) g is homotopically deformed to g′ such that at all points on ∂B and
the boundary D of the unit ball g is fixed under the homotopy,

2) g′ in B\D is C∞ and finite to one to its image in Rl.
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Proof. of Claim A. 3: Let θ1, θ2 be two analytic functions on Rk such that
θ1 = ϵ, θ2 = 0 define ∂B and D where ϵ is the radius of B. We consider the
homotopy

(1− t)g + t(g + θ1θ2h), t ∈ [0, 1]. (A.3)

where h is some C∞ function. Thus g is homotopic to(
g + θ1θ2h

)
(A.4)

The determinant of a maximal minor of the differential J of(
g + θ1θ2h

)
(A.5)

is a polynomial in θ1, θ2 whose coefficients are C∞ functions of h. Thus for a
small ϵ, by choosing a suitable h, the determinant is non-zero for all points in
B with θ2 ̸= 1 and θ1 ̸= ϵ, i.e. the differential J has full rank. By mean value
theorem (

g + θ1θ2h

)
is 1-to-1 to its image when restricted to B\D.

It satisfies required conditions in Claim A. 3.

Now let f be the composition of

(∆p)′ → Y ×X → X

where (∆p)′ is a neighborhood of ∆p . Next we cover ∆̄p with finitely many
balls Bi, i = 1, · · · , l and the homotopy in Claim A .3 for each Bi. Consider
the first open set B1. Applying Claim A.3, f is homotopic to f1 : (∆p)′ → X
such that the homotopy fix the map f on ∂B1 and D and f is homotopic to f1
which is finite-to-one on B1. Then we repeat the homotopy from f1 to f2, from
f2 to f3, · · · , from fl−1 to fl. Finally, we obtain a continuous map fl which
is finite-to-one in each Bi and is equal to f on D. Let Ci be the barycentric
subdivisions obtained from the covering Bi, i = 1, · · · , l. Then fl is homotopy
to f . We complete the proof.

Lemma A.4. For any cellular cycle S in Y ×X, of dimension p < dim(X), S
is homopotic to a cycle finite to X.
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Proof. Let

S =
∑
i

Ci (A.6)

and each cell Ci satisfies Proposition A.2 with a homotopy hi. Then there
is synchronized homotopy with the same parameter t ∈ [0, 1] such that Ci is
homotopic to another cell C ′

i 1-to-1 to X , but the boundary is fixed. Since the
boundaries are not changed, this synchronized homotopy are glued together to
yield a homotopy of the cycle S,

S′ =
∑
i

C ′
i. (A.7)
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