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Abstract

Let X be a complex projective manifold of dimension n. The total sum
of singular cohomology groups Hr(X;Q) in Q with all degrees, denoted
by H(X;Q) has the filtration by the level

H(X;Q) = NnH(X) ⊃ Nn−1H(X) ⊃ · · · ⊃ N1H(X) ⊃ N0H(X) (0.1)

where

NkH(X) =

n−[ k
2
]∑

i=0

N iH2i+k(X)

and N iH2i+k(X) is the subgroup in the coniveau filtration with the
coniveau i and level k. On the other hand, the hard Lefschezt theorem
yields the automorphism of Lefschetz type,

P : H(X;Q) → H(X;Q)(
α → α · (power of hyperplane)

for deg(α) ≤ n

)
which in topology is the Poincaré duality. In this paper, we show P
preserves the filtration (0.1), i.e. P maps the subgroup NkH(X) onto
itself.
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1 Introduction

1.1 Statement

We study subgroups of cohomology groups. It starts with the Lefschetz standard
conjecture ([3]). The conjecture addresses the et́al cohomology of a smooth
projective variety X of dimension n over any algebraically closed field. We step
back to assume the ground field is C, and replace the et́al cohomology with the
singular cohomology H(X;Q) with rational coefficients. Additional superscript
denotes the degree of the cohomology. Let u be the hyperplane section class in
H2(X;Z). For 0 ≤ h ≤ n, let Lh denote the Lefschetz homomorphism on the
cohomology

Lh :
∑2n−2h

i=0 Hi(X;Q) →
∑2n−2h

i=0 Hi+2h(X;Q)
α → α · uh. (1.1)

The hard Lefschetz theorem asserts Lh is restricted to an isomorphism be-
tween Hn−h(X;Q) and Hn+h(X;Q). Grothendieck envisioned that Lh is arith-
metic in nature. He proposed the Lefschetz standard conjecture*:

Conjecture 1.1. Let Aj(X) ⊂ H2j(X;Q) for a non-negative integer j be the
image of the cycle map. Then the restriction Lq−p

0 of Lq−p to Ap(X),

Lq−p
0 : Ap(X) → Aq(X)

α → α · uq−p.
(1.2)

for p+ q = n, q ≥ p is an isomorphism.

We extend the conjecture to all subgroups of the same type. Let

N iH2i+k(X) = NkH(X) ∩H2i+k(X;Q)

be the subspaces in the coniveau filtration of the cohomology. They will be
called the coniveau subgroups. Since Aj(X) = N jH2j(X), coniveau subgroups
can be viewed as an extension of the cycle group to non zero level k. For the
extension, we prove the main theorem.

Key words: Cohomology, coniveau filtration, Lefschetz standard conjecture, current’s
intersection

2020 Mathematics subject classification Primary: 14FXX; Secondary: 58A25, 53C65
*Precisely, Grothendieck’s original proposal addresses et́al cohomology. Later, it is ex-

tended to all abstract Weil cohomology (which itself is inspired by Grothendieck’s idea). Our
result, though, only holds for singular cohomology.
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Theorem 1.2. (Main theorem)
Let p, q, k be whole numbers satisfying

p+ q + k = n, h = q − p, q ≥ p.

Then the restricted Lefschetz homomorphism (1.2) to the subspace

Lh
k : NpH2p+k(X) → NqH2q+k(X)

α → α · uh. (1.3)

is still an isomorphism. We call the family of isomorphisms Lh
k Grothendieck

duality

So for k = 0, Main theorem is

Corollary 1.3. Conjecture 1.1 is correct.

The following is an example of this duality.

Example 1.4. Let X a smooth projective variety over C with dim(X) = 4.
Retain all indexes p, q, k as in Theorem 1.2. The following table classifies the
Grothendieck dualities.

row p q k Grothendieck duality

I 0 1 3 N0H3(X)
L1

3≃ N1H5(X)

II 0 2 2 N0H2(X)
L2

2≃ N2H6(X)

III 0 3 1 N0H1(X)
L3

1≃ N3H7(X)

IV 1 1 2 N1H4(X)
L0

2= N1H4(X)

V 1 2 1 N1H3(X)
L1

1≃ N2H5(X)

VI 1 3 0 N1H2(X)
L2

0≃ N3H6(X)

VII 2 2 0 N2H4(X)
L0

0= N2H4(X)

The duality maps in the rows I, II, III form the Poincaré duality that is
topological (by the hard Lefschetz theorem). The duality map in the row V I is
the prediction of the Lefschetz standard conjecture (it is true by the Lefschetz
(1, 1) theorem). The duality maps in the rows IV, V II are the identity maps.
The duality map in the row V is the content of this paper − Grothendieck duality.
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1.2 Outline of the proof

Let X be a complex projective manifold of dimension n, and V h the generic
h-codimensional plane section. The plane section map Lh

k factors through the
local cohomology in the composite,

NpH2p+k(X)
Lh

loc−→ NqH2q+k
V h (X)

i−→ NqH2q+k(X) (1.4)

where the subscript V h on the cohomology denotes the support and i is the
inclusion map. The composition Lh

k is injective due to the hard Lefschetz theo-
rem. Hence it is sufficient to prove the surjectivity of both maps. The proof of
the surjectivity is the content of this paper whose principle idea is to change the
main objects in cohomology theory to attack currents on differential manifolds.
We explore it in three steps.

(1) Switch the focus to currents. Based on de Rham cohomology denoted
also by H(X;C), we interpret the coniveau filtration of cohomology by using
C∞ currents. Let CpH2p+k(X) be the subgroups of cohomology, that consists
of closed currents supported on subvarieties of codimension at least p. Then in
the appendix A, we prove that

CpH2p+k(X) = NpH2p+k(X). (1.5)

The principle leads to the study of currents.
(2) Develop a measure-theoretical theory in intersection– real intersection

theory (see [4]). The theory claims that on the C∞ manifold X, there is a
subgroup L (X) ⊂ D ′(X) in the group of currents, called Lebesgue currents.
It is sufficiently large so that it includes all C∞ singular chains and C∞ forms.
On L (X), there is a bilinear homomorphism dependent of the de Rham data
attached to the C∞ structure of X,

[· ∧ ·] : L (X)× L (X) → L (X)
(T1, T2) → [T1 ∧ T2],

(1.6)

referred to as the intersection of currents. The current’s intersection is measure-
theoretical, but the next step shows it can be reduced to the cup product on
cohomology to give properties of the coniveau filtration.

(3) At the last, the content of this paper constructs the extrinsic geometry to
practice the principles in (1) and (2). The following is this extrinsic geometry.

Let An+2 be the affine space over C with the standard basis

e0, · · · , en+1.

Let h be a natural number ≤ n. Consider two subspaces

An+2−h = span(e0, · · · , en+1−h),
Ah = span(en+2−h, · · · , en+1).

(1.7)
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Then
An+2−h ⊕ Ah = An+2. (1.8)

Next we define a specific variation of Ah. Let C∪{∞} ≃ P1 be the parameter
space of the variation, denoted by Υ, where ∞ is the infinity point of P1. The
family of linear spaces parametrized by Υ is defined by

Ah
z = span(zen+2−h − e0, en+3−h, · · · , en+1), for z ∈ C (1.9)

and Ah
0 is the original Ah. So Υ ⊂ G(h, n + 2). Let U = C be the affine open

subset that parametrizes those Ah
z satisfying the decomposition

An+2 = An+2−h ⊕ Ah
z . (1.10)

The point z = ∞ not in U corresponds to the plane Ah
∞ that fails the decom-

position (1.10). We call z = ∞ the unstable point, others stable points. Let x
be a vector in An+2. Therefore for each stable point z ∈ U , we have the unique
decomposition

x = x1(z) + x2(z). (1.11)

The decomposition gives a family of linear transformations,

A× U × (An+2−h ⊕ Ah
z ) → An+2−h ⊕ Ah

z = An+2

(t, z,x1(z) + x2(z)) → x1(z) + tx2(z).
(1.12)

Furthermore it gives a family of linear transformations,

A× U × (An+2−h ⊕ Ah
z ) → An+2−h ⊕ Ah

z = An+2

(t, z,x1(z) + x2(z)) → x1(z) + tx2(z)
(1.13)

which yields a rational map of the projective variety

g : P1 ×Υ×Pn+1 99K Pn+1

(t, z, [x1(z) + x2(z)]) 99K [x1(z) + tx2(z)].(
In homomogenous coordinates, g is the rational map

g : P1 ×Υ×Pn+1 99K Pn+1 (1.14)

(t, z, [x0, · · · , xn+1])99K

[z(1− t)xn+2−h + x0, x1, · · · , xn+h−1, txn+2−h, · · · , txn+1]
(1.15)

where x0, · · · , xn+1 are the homogeneous coordinates in the basis e0, · · · , en+1.

)
.

Let
Ω = graph(g) ⊂ P1 ×Υ×Pn+1 ×Pn+1 (1.16)

be the graph defined to be the Zariski closure of the graph at the regular locus.
Denote the projectivization P(An+2−h) by Pn+1−h.
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Now we consider the smooth projective variety X of dimension n, equipped
with the polarization u ∈ H2(X;Z). Let

µ : X → Pn+1

be a birational morphism to a hypersurface of Pn+1 in a general position, in
particular µ(X) is in a general position as a subvariety with respect to the
polarization, X has the very ample line bundle µ∗(OPn+1(1)) such that u =
c1(µ

∗(OPn+1(1))) is the original polarization. The collection of the 4 items, the
Pn+1, its coordinates system, the linear map g, and the µ is called cone data.
The cone data can be obtained through any embedding X ⊂ PN , by taking a
projection to a generic subspace: X → Pn+1.

Notation: we use similar notations as those in intersection theory whenever
they are well-defined. In particular, If f :M1 →M2 is a C∞ map between two
compact manifolds equipped with de Rham data. Let M1 ×M2 be equipped
with the product de Rham data, and P1 : M1 ×M2 → M1 be the projection.
For Ti ∈ L (Mi),

[T1 ∧f T2] := (P1)∗

[
graph(f) ∧ (T1 × T2)

]
.

where T1 × T2 is the tensor product of currents. For a test form ϕ of M1, the
evaluation T1(ϕ) is denoted by the integral notation∫

T1

ϕ. (1.17)

Le τ = (id, id, µ, µ) be the morphism

P1 ×Υ×X ×X → P1 ×Υ×Pn+1 ×Pn+1

and τ0 = (id, µ, µ) be the morphism

Υ× V h ×X → Υ×Pn+1−h ×Pn+1

where V h = Pn+1−h ∩X.
Next we construct the cone family in currents. Let σ be a closed Lebesgue

current in X. Denote the support of the current by |σ|. Let |σ| be the Zariski
closure of the support ( the smallest subvariety containing |σ|). We say σ is in
general position if |σ| is. Assume P1,Υ, X are equipped with de Rham data
and all the Cartesian products are equipped with the product de Rham data.
Let P14 : P1 ×Υ×X ×X → P1 ×X (1st× 4th) be the projection. Then for
a generally positioned σ, let

ψ(σ) := (P14)∗

(
[(P1 ×Υ× σ ×X)] ∧τ Ω

)
(1.18)
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The current ψ(σ) determines a family of currents ψt(σ) (see definition 3.12 in
part II, [4]). We call ψ(σ) the cone family and ψt(σ) the end current of the cone
family.

Proposition 1.5. Assume X is equipped with a de Rham data. Denote the
subgroup of the closed C∞ singular cycles by Z(·), and the subgroup of closed
Lebesgue currents by LC(·). Let σ ∈ LC(X) such that dim(σ) +K(σ) < n− h
where K(σ) is the maximal level of the coniveau subgroup that contains the
cohomology of σ in X.

(1) ψ0(σ) is a current supported on V h,

(2) ψ1(σ)
hom.equi.∼ σ.

(3) There exists an operator, called cone operator,

Conh : Z(X) → LC(X) (1.19)

such that
[Conh(c) ∧ V h] = c. (1.20)

(4) If the cohomology of c ∈ Z(X) is contained in a coniveau subgroup of
level k, so is the cohomology of Conh(c).

The cone family and cone operator are extrinsic and their truth is the analy-
sis based on [4]. However, Proposition 1.5 implies the algebro-geometric result,
Theorem 1.2.

Proof. of Theorem 1.2: By the Leibniz rule in II, [4], all end currents are closed.
By Corollary 3.14 in II, [4], ψ0(σ), ψ1(σ) are homological. Next we observe the
level. Denote the cohomology class of a closed current ∗ by the angle bracket
⟨∗⟩. Let σ be a singular cycle such that ⟨σ⟩ ∈ H2p+k(X;Q) has the maximal
level k, i.e. its cohomology class lies in the subgroup of the coniveau filtration
NpH2p+k(X) with the maximal level k. Then first we notice the dimension of Ω
is n+1. Thus the degree of the cohomology of ψt(σ) for all t is 2p+k. Secondly
the ψt(σ) is defined by current’s intersection which determines that the support
|ψt(σ)| lies in the algebraic set

P14

(
({t} × U × |σ| ×X) ∩ τ−1(Ω)

)
. (1.21)

If either the intersection above is not proper, or the projection is not generically
1-to-1, then ψt(σ) = 0 that belongs to any subgroups. So we may assume
both the intersection is proper and the projection is generically 1-to-1. Then
the algebraic set (1.21) for the non zero ψt(σ) has codimension p + k (real
dimension 2p+2k). This shows the cohomology of ψt(σ) lies in the subgroup of
level k. So ψt as an operator on cohomology preserves the level of the subgroups
in the coniveau filtration. Then parts (1) and (2) imply i is surjective.



2 CONE FAMILY 8

Now we let σ be a C∞ singular cycle representing the cohomology class. The
part (3) implies that Conh(σ) represents the cohomological inverse of ⟨σ⟩. Part
(4) states that the operator Conh preserves the level. Hence Lh

loc is surjective.

In the next section, we give the proof of Proposition 1.5. The appendix
includes the base of this paper, the currents version of the coniveau filtration,
and a lemma about the iterated limits.

2 Cone family

2.1 0 end cycle

Claim 2.1. The part (1) of Proposition 1.5 is true

Proof. Since |σ| is in general position, by the supportivity of current’s intersec-
tion (part II, [4]) the support of ψ0(σ) lies in the image of the proper morphism,

P4

(
({0} ×Υ× |σ| ×X) ∩ τ−1(Ω)

)
(2.1)

where P4 : P1 × Υ × X × X → X(4th) is the projection. Since Ph is generic
and dim(σ) + k < n − h, Ph ∩ σ = ∅. Then according to the formula of the
linear map g (1.15), all fibres of the fibration,

({0} ×Υ× |σ| ×X) ∩ τ−1(Ω0) → Υ× |σ| (2.2)

must lie in the plane section V h. Over the unstable point, the fibre is in the
closure, therefore still lies in V h. Hence the projection

P4

(
({0} ×Υ× |σ| ×X)∩τ−1(Ω)

)
(2.3)

lies in V h. Therefore ψ0(σ) also lies in V h.

2.2 1 end cycle

Claim 2.2. The part (2) of Proposition 1.5 is correct.

Proof. Let P1,Υ, X be equipped with de Rham data. By choosing appropriate
de Rham data, we have the conditional associativity, Proposition 1.7 in II, [4]
to obtain

[P1 ×Υ× σ ×X) ∧τ Ω] =

[
P1 ×Υ× σ ×X) ∧ [

(
P1 ×Υ×X ×X

)
∧τ Ω]

]
.



2 CONE FAMILY 9

So we focus on the current

[P1 ×Υ×X ×X) ∧τ Ω]. (2.4)

By the real intersection theory,

[
(
P1 ×Υ×X ×X

)
∧τ Ω]

is independent of de Rham data and is the current of the algebraic cycle(
P1 ×Υ×X ×X

)
•τ Ω. (2.5)

The support has the trivial component

{1} ×Υ×∆X (2.6)

where ∆X is the diagonal current of X. Let Σ be the rest which is reduced and
irreducible. Since over the generic parameters t, z, the fibre of Ω → P1 × Υ
is a graph of a non-degenerated linear transformation, the intersection (2.5) is
generically transversal. Hence(

P1 ×Υ×X ×X
)
•τ Ω = Σ+m{1} ×Υ×∆σ. (2.7)

where m is the intersection multiplicity. Since the second component

{1} ×Υ×∆σ

is a trivial Cartesian product, the projection of the cycle to {1} ×X(4th) has
fibres of positive dimensions. Thus the cone family ψ(σ) is equal to

(P14)∗

[(
P1 ×Υ× σ ×X

)
∧ Σ

]
. (2.8)

Next we see the fibre structure of Σ. Notice since X is generic with respect of
the polarization, no component of the scheme intersection

τ(Σ) ∩ τ(P1 ×Υ×X ×X)

lies the non-isomorphic locus of the birational map τ . Thus it suffices to work
with the cycle-intersection in the Pn+1 × Pn+1. The key ingredient is the
following specialization at t = 1 for Σ. Let µ(X) be the hypersurface of Pn+1.
Assume µ(X) is defined by the polynomial f . Then for µ2 = (µ, µ), µ2(X ×X)
is a complete intersection defined by two polynomials f(x), f(y) in

Pn+1 ×Pn+1

for (x,y) ∈ Pn+1 ×Pn+1. Then the fibre

µ2(Σz
t ),
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over the fixed t, z for t ̸= 1 is the fibre

Ωz
t

defined by two hypersurfaces f(x), f(y). As in (1.11), we let [x1(z)], [x2(z)] be
the points in the decomposition

Pn+1 = Pn+1−h#Ph−1
z , dependent of z,

where Ph−1
z = P(Ah

z ) and # is the linear join. Since t is near 1, it can not be 0
or ∞. Then Ωz

t is a graph isomorphic to Pn+1 expressed as the graph{(
[x1(z) + x2(z)], [x1(z) + tx2(z)]

)}
⊂ Pn+1 ×Pn+1.

Then µ2(Σz
t ) is a complete intersection explicitly defined by

f

(
x1(z) + x2(z)

)
, f

(
x1(z) + tx2(z)

)
(2.9)

inside of Ωz
t ≃ Pn+1. Two polynomials are equal at t = 1. Thus for the

specialization we consider the expansion in the factor t− 1,

f

(
x1(z) + x2(z)

)
− f

(
x1(z) + tx2(z)

)
= (t− 1)F z

1 (x1 + x2) + (t− 1)2F z
2 (x1 + x2) + · · ·

where F z
r (x1 + x2) is a hypersurface in

{[x1 + x2]} = Pn+1 ≃ ∆Pn+1

dependent of z. By the assumption on the cone data,

{F z
1 (x1 + x2) = 0}

is a varied hypersurface with z ∈ U , of degree 1. Notice the inverse image of
∆Pn+1 is the diagonal ∆X of X. So the specialized fibre Σ1 over t = 1 is a
hypersurface in {1} × Υ ×∆X that itself is fibred over Υ such that each fibre
over z ∈ Υ is a hypersurface of the diagonal ∆X . Furthermore Σ1 covers ∆X

with the multiplicity 1.

This shows the fibre structure of Σ1. Now we return to the calculation.
Denote the cohomology of a closed current by the angle bracket ⟨∗⟩. The coho-
mology ⟨ψ1(σ)⟩ is equal to

P∗

〈[
({1} ×X) ∧ (P14)∗[

(
P1 ×Υ× σ ×X

)
∧ Σ]

]〉
(2.10)
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where P : X × X → X(2nd) is the projection. Then we use the algebraic
properties of the cup product to obtain

(2.10) = (P3)∗

(
⟨Υ× σ ×X⟩ ∪ ⟨Σ1⟩

)
(2.11)

where P3 : Υ×X×X → X(3rd) is the projection. Let P23 : Υ×X×X → X×X
be the projection. By the fibre structure of Σ1, the projection (P23)∗(Σ) = ∆X

as a cycle. So we apply the projection formula to (2.11) to obtain that

(2.11) = P∗
(
⟨σ ×X⟩ ∪ ⟨∆X⟩

)
. (2.12)

By the projection formula again

P∗
(
⟨σ ×X⟩ ∪ ⟨∆X⟩

)
= ⟨σ⟩.

We complete the proof.

2.3 Cone operator

In this subsection we construct Conh, then prove parts (3), (4) in Proposition
1.5. The construction is the key in proving the surjectivity of Lh

loc. Let ξ be
a C∞ real valued function on Υ that has the affine coordinate z ∈ C as in the
introduction, satisfying (a) ξ is a real valued between 0 and 1; (b) ξ(z) = 1 for
|z| ≤ 1; (c) ξ(z) = 0 in a small neighborhood of the unstable point ∞. We
denote its lift to Υ × V h ×X also by ξ. For any natural number N , we define
a diffeomorphism FN ,

Υ×X ×X → Υ×X ×X

(z,x,y) → (
z

N
,x,y).

Let π : Υ×X ×X → X(3rd) the projection. Let Ih ⊂ Υ×Pn+1 ×Pn+1−h be

the subvariety that is the fibre of the restriction of Ω to t = 0

(
In coordinates,

Ih is the graph of the rational map

Υ×Pn+1 99K Pn+1−h

(z, [x0, · · · , xn+1]) 99K [zxn+2−h + x0, x1, · · · , xn+h−1]

)
.

Definition 2.3. Let σ ∈ LC(V
h). We define the cone operator, denoted by

Conh(σ), to be the functional on the test forms ϕ of X,

ϕ −→ lim
N→∞

∫
[(Υ×σ×X)∧τ0Ih]

F ∗
N (ξ)π∗(ϕ). (2.13)
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Equivalently, if it exists, Con1
1(σ) is defined to the weak limit

lim
N→∞

π∗

(
F ∗
N (ξ)[(Υ× σ ×X) ∧τ0 Ih]

)
where N is a natural number.

Proposition 2.4. Let X be equipped with a de Rham data. Let σ ⊂ V h be
a C∞ singular cycle in a general position. Then

(1) as a functional, Conh(σ) is convergent and continuous;
(2) as a current, Conh(σ) is closed;
(3) as a current, Conh(σ) is Lebesgue and satisfies

[Conh(σ) ∧ V h] = σ. (2.14)

(4) If there is a coniveau subgroup of level k containing the cohomology of σ,
then there is a coniveau subgroup of the same level k containing the cohomology
of Conh(σ).

Proof. We’ll make a local computation on the manifold Υ × V h × X. So we
set up the local coordinates first. Let W be a neighborhood centered around a
point a∞ in the support of

(Υ× σ ×X) ∧τ0 Ih.

It is sufficient to consider such a point a∞ whose projection to Υ is the unstable
point ∞. Next we set-up the coordinates for the local expression. Let W be
equipped with a standard, C∞ real coordinates system R2(2n−h+1). In this
chart, we may assume the orthogonal projection of W to V h contains |σ|. Let
ηi, finite i, be a partition of unity for Υ× V h ×X such that η1 has a compact
support in W .

(1) With a suitable de Rham data, we apply the conditional associativity in
II, [4] to obtain that[[
(Υ×σ×X)∧1 (Υ×V h×X)

]
∧τ0 Ih

]
=

[
(Υ×σ×X)∧1

[
(Υ×V h×X)∧τ0 Ih

]]
where the subscript 1 is the intersection in Υ× V h ×X, and each intersection
uses associative de Rham data. Let I =

[
(Υ × V h × X) ∧τ0 Ih

]
which is the

integration over the algebraic cycle

(Υ× V h ×X) •τ0 Ih

denoted also by I. Then the integral in (2.13) can be written as∫
[(Υ×σ×X)∧I]

F ∗
N (ξ)π∗(ϕ). (2.15)
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Using the partition of unity, it suffices to consider the value∫
η1[(Υ×σ×X)∧I]

F ∗
N (ξ)π∗(ϕ). (2.16)

Claim 2.5. It suffices to show∣∣∣∣∫
η1[(Υ×σ×X)∧I]

(F ∗
N1

(ξ)− F ∗
N2

(ξ))π∗(ϕ)

∣∣∣∣ (2.17)

is sufficiently small when N1, N2 are sufficiently large.

Proof. of Claim 2.5: Let gN = F ∗
N1

(ξ) − F ∗
N2

(ξ) for sufficiently large N1, N2

where N = max(N1, N2). Also we may assume π∗(ϕ) = ϕ0dµ where dµ is the
volume form of the Euclidean coordinates’ plane V in the chart and ϕ0 is a C∞

function with the compact support in the chart. Then

(2.17) = |
∫
ϕ0gNη1[(Υ×σ×X)∧I]

dµ|. (2.18)

Since the current in the domain of the integral expression (2.18) is Lebesgue,
there is a bounded (for all N), integrable function LN (y) on V such that

(2.18) = |
∫
y∈V

LN (y)dµ|. (2.19)

Since the support of gN approaches the measurable set

PV({∞} × σ ×X) ∩ τ−1(Ih)

where PV is the localized orthogonal projection from Υ×V h×X to V. Since in
a neighborhood of a.e point, it is a semi-algebraic set of a lower real dimension,
the set has Lebesgue measure zero. Thus the measure of the support of LN (y)
weakly approaches 0 as N → ∞. Therefore the number (2.18) approaches 0 as
N → ∞. This shows the functional is convergent.

Let ϕl, l = 1, 2, · · · be a sequence of test forms, and al, a sequence of real
numbers approaching ∞ such that alϕl is bounded for all l. Then by the above
argument and boundeness of the Lebesgue currents, the evaluation of the func-
tional ∫

Conh(σ)

alϕl (2.20)

is also bounded. This implies
∫
Conh(σ)

ϕl → 0 as l → ∞. Therefore the func-

tional

ϕ −→ lim
N→∞

∫
[(Υ×σ×X)∧τ0

Ih]

F ∗
N (ξ)π∗(ϕ),

denoted by Conh(σ) , is continuous, therefore a current.
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(2) To show the current Conh(σ) is closed, it suffices to show the functional

lim
N→∞

∫
[(Υ×σ×X)∧τ0Ih]

F ∗
N (ξ)π∗(dϕ) (2.21)

is zero, where ϕ is a C∞ form on X. Notice

lim
N→∞

∫
[(Υ×σ×X)∧τ0Ih]

F ∗
N (ξ)π∗(dϕ)

= lim
N→∞

∫
d[(Υ×σ×X)∧τ0Ih]

F ∗
N (ξ)π∗(ϕ)

− lim
N→∞

∫[
F∗

N (dξ)∧[(Υ×σ×X)∧τ0
Ih]

] π∗(ϕ).

(2.22)

Then we observe the current[
F ∗
N (dξ) ∧ [(Υ× σ ×X) ∧τ0 Ih]

]
to see it is the same type of currents as in the domain of (2.18). Precisely, its
projection to the plane V is the measure approaching 0 as N → ∞. So

lim
N→∞

∫[
F∗

N (dξ)∧[(Υ×σ×X)∧τ0Ih]

] π∗(ϕ) = 0. (2.23)

For the integral ∫
d[(Υ×σ×X)∧τ0

Ih]

F ∗
N

(
ξπ∗ϕ

)
we apply the Leibniz rule II, [4] to obtain the current d[(Υ × σ ×X) ∧τ0 Ih] is
also zero. Hence (2.21) is zero.

(3) In above arguments, we obtain a closed current Conh(σ). To show it
is Lebesgue, it suffices to show it satisfies Randon-Nilkodym condition. We
continue the setting as in part (1) to let λ → 0 be positive real numbers. The
Radon-Nilkodym condition on Conh(σ) is the convergence of∫

η1[(Υ×σ×X)∧I]
F ∗
N (ξ)π∗(S∗

λ(ϕ)), (2.24)

as λ→ 0, where Sλ is the local operator in the chart, sending

y → yλ−1.

for the variable y of the coordinate’s plane V. It is equivalent to the assertion
that ∫

η1[(Υ×σ×X)∧I]
F ∗
N (ξ)π∗(S∗

λ1
(ϕ)− S∗

λ2
(ϕ)

)
, (2.25)
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converges to 0 as λi → 0 for i = 1, 2. Since

[(Υ× σ ×X) ∧ I]

is Lebesgue, therefore satisfies the Radon-Nilkodym condition and η1, F
∗
N (ξ) are

both bounded (also for all N), (2.25) indeed converges to 0. Therefore Conh(σ)
is a Lebesgue current. Next we consider its intersection. Let V h be the plane
section of codimension h, ϕ a test form on X, We calculate∫

[Conh(σ)∧V h]

ϕ

= lim
λ→0

∫
Conh(σ)

RX
λ (V h) ∧ ϕ

= lim
λ→0

lim
N→∞

∫
[(Υ×σ×X)∧τ0

Ih]

(FN )∗(ξ)π∗
(
RX

λ (V h) ∧ ϕ
) (2.26)

where π∗
(
RX

λ (V h)

)
= R

(Υ×V h×X)
λ (Υ× V h × V h) for suitable de Rham data.

Next we show the key step that the iterated limit in (2.26) is independent of
the limit’s order, i.e the order is interchangeable. We’ll make a local computation
which continue with the setting in (1). The localized integral in (2.26) in the
neighborhood of supp(η1) is equal to∫

F∗
N (ξ)η1[(Υ×σ×X)∧τ0

Ih]∧π∗(ϕ)

π∗
(
RX

λ (V h)

)
(2.27)

Let λ1, λ2 be two numbers near 0. By the same reason for the convergence of the
Radon-Nilkodym condition of Conh(σ), in particular the boundeness of F ∗

N (ξ),∫
F∗

N (ξ)η1[(Υ×σ×X)∧τ0
Ih]∧π∗(ϕ)

π∗
(
RX

λ1
(V h)−RX

λ1
(V h)

)
converges to 0 uniformly for all N . Hence the convergence of (2.27) is uniform
for all N . Then Lemma B.1 implies the iterated limit in (2.26) is independent
of the limit’s order. So we obtain

(2.26) = lim
N→∞

lim
λ→0

∫
[(Υ×σ×X)∧τ0Ih]

F ∗
N (ξ)π∗

(
RX

λ (V h) ∧ ϕ
)

= lim
N→∞

lim
λ→0

∫
[(Υ×σ×X)∧τ0

Ih]

π∗(RX
λ (V h)) ∧ F ∗

N (ξ)π∗(ϕ)

= lim
N→∞

∫[
[(Υ×σ×X)∧τ0

Ih]∧(Υ×V h×V h)

] F ∗
N (ξ)π∗(ϕ)

= lim
N→∞

∫
F∗

N (ξ)

[
[(Υ×σ×X)∧I

] π∗(ϕ)

(2.28)
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Then we can continue

(2.28) = lim
N→∞

∫
F∗

N (ξ)

[
(Υ×σ×X)∧I

] π∗(ϕ)

=

∫[
((Υ×σ×X)∧I

)] π∗ϕ

− lim
N→∞

∫[
(1−F∗

N (ξ))[Υ∧(Υ×σ×X)]∧I
)] π∗ϕ.

(2.29)

Now we consider

lim
N→∞

∫[
(1−F∗

N (ξ))[Υ∧(Υ×σ×X)]∧I
)] π∗ϕ. (2.30)

Since 1− ξ( z
N ) is a function supported on {z : |z| ≥ N}, the Lebesgue measure

of the orthogonal projection of

(1− F ∗
N (ξ))

[
[Υ ∧ (Υ× σ ×X)] ∧ I

]
to the plane V approaches to 0, as N → 0. By the same reason for Claim 2.5,
i.e. measure’s weak convergence, (2.30) is 0. Hence

(2.28) =

∫[
(Υ×σ×X)∧I

] π∗ϕ (2.31)

Let
Ph : Υ× V h ×X → V h ×X

be the projection. We observe

(Ph)∗(I) = ∆V h ,

where ∆V h is the diagonal of V h. By the projection formula for the projection
Ph, we obtain that

(2.31) =

∫
[(σ×V h)∧∆

V h ]

(PX)∗(ϕ) (2.32)

where PX : X ×X → X(2rd) is the projection map. By the commutativity of
the intersection, ∫

[(σ×V h)∧∆
V h ]

(PX)∗(ϕ)

=

∫[
∆

V h∧[(σ×V h)
](PX)∗(ϕ)

=

∫
σ

ϕ.

(2.33)
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We obtain
[Conh(σ) ∧ V h] = σ. (2.34)

(4) It suffices to prove it for the smallest algebraic set containing |σ|. Assume
the codimension of |σ| ⊂ |σ| is k. Let A be the algebraic set

ν

(
(Υ× |σ| ×X) ∩ Ih

)
(2.35)

where ν : Υ × V h × X → X is the projection. If the intersection in (2.35) is
proper and the projection ν is restricted to generically finite-to-one map, dim(A)
is dim(|σ|) + 2h. So Conh(σ) is contained in A with codimension k, i.e.

2dim(A)− dim(Conh(σ)) = k.

The assertion is proved. If either the intersection in (2.35) is not proper or ν is
not generically finite to one, then Conh(σ) is 0 whose cohomology lies in any
subgroups.

With the constructed Conh, Proposition 2.4 implies parts (3), (4) in Propo-
sition 1.5. So we complete the proof of Proposition 1.5.

Appendix A Current’s version of the coniveau
filtration

Leveled filtration (0.1) in the abstract is the re-grouped coniveau filtration.
While we review the coniveau filtration below, we’ll give another description by
using currents. The notion is originated from [2] where Grothendieck proposed
a filtration Filt′p, and wrote “Arithemetic filtration (Filt′p) embodies deep
arithmetic properties of the scheme ”. This later was referred to as the coniveau
filtration. The subgroup in the filtration is defined as the linear span of kernels
of the linear maps

H2p+k(X;Q) → H2p+k(X −W ;Q) (A.1)

for subvarieties W of codimension at least p. We’ll use another interpretation
of the coniveau filtration. It is through currents, which are known to unite
both homology and cohomology. The definition geometrically uses the notion
of support. Let D′(X) be the space of currents on X. Let CD′(X) be its subset
of closed currents and ED′(X) be its subset of exact currents. Then de Rham
theory is the equality

CD′(X)

ED′(X)
= H(X;C). (A.2)
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Next we define another type subgroups. Let CpH2p+k(X) be the subgroup of
H2p+k(X), whose elements are represented by closed currents supported in some
subvariety of codimension at least p. We have the following description.

Lemma A.1. Let X be a smooth projective variety over C. Then

CpH2p+k(X) = NpH2p+k(X). (A.3)

Proof. We recall the coniveau subgroup NpH2p+k(X) is defined as a subgroup⋃
cod(W )≥p

ker

{
H2p+k(X;Q) → H2p+k(X\W ;Q)

}
.

Thus it suffices to focus on the interpretation ofH2p+k(X;Q) → H2p+k(X\W ;Q).
It is clear our definition of it is geometric. Hence by the de Rham theory

CpH2p+k(X) ⊂ NpH2p+k(X). (A.4)

For the converse, let α ∈ NpH2p+k(X). Applying Cor. 8.2.8, [1], we obtain a
representative in a singular cycle σ such that supp(σ) lies on a subvariety W of
cod(W ) ≥ p. Since σ is a current, α ∈ CpH2p+k(X).

Appendix B Iterated limits

Lemma B.1. Let aλ1λ2 be the real numbers indexed by two real numbers λ1 >
0, λ2 > 0. Assume

(1) limits lim
λ1→0

aλ1λ2
and lim

λ2→0
aλ1λ2

exist,

(2) the convergence of lim
λ2→0

aλ1λ2
is uniform,

(3) the iterated limit lim
λ2→0

lim
λ1→0

aλ1λ2
exists.

Then the iterated limit in the other order lim
λ1→0

lim
λ2→0

aλ1λ2
also exists and

lim
λ1→0

lim
λ2→0

aλ1λ2
= lim

λ2→0
lim
λ1→0

aλ1λ2
. (B.1)

Proof. Let L = lim
λ2→0

lim
λ1→0

aλ1λ2
. Let ϵ > 0 be a real number. By the convergence

in the assumptions,
| lim
λ1→0

aλ1λ2
− L| ≤ ϵ (B.2)

for a small fixed λ2;
|aλ1λ2

− lim
λ1→0

aλ1λ2
| ≤ ϵ (B.3)
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for all sufficiently small λ1 (note λ2 is a fixed positive number);

| lim
λ2→0

aλ1λ2
− aλ1λ2

| ≤ ϵ (B.4)

for all sufficiently small λ1 and another fixed λ2 (due to the uniform conver-
gence). Combining B.2, B.3, B.4, we obtain for all sufficiently small λ1,

| lim
λ2→0

aλ1λ2
− L| ≤ 3ϵ. (B.5)

This completes the proof.
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